
Rockall-DB March 2016

1 Introduction | Rockall Software Ltd.

Rockall-DB
Technical Manual

Copyright © Michael Parkes 2016. All

UK Patent Application Number 1511960.5

US Patent Application Number 15/056,092

E-Mail: MABParkes@gmail.com

Telephone: +44 1384 400058

March 2016 Rockall-DB

Rockall Software Ltd. | Introduction 2

It is not uncommon for computer software to contain bugs, mistakes or other issues

that may cause it to malfunction in a variety of unexpected ways. Consequently,

malfunction without warning

Reproduction or transmission of all or part of this work, whether by photocopying or

storing in any medium by electronic means or otherwise, without the written

permission of the owner, is prohibited. The commission of any unauthorised act in

relation to this work may result in civil or criminal actions. Licences issued by the

Copyright Licensing Agency Limited do not extend to this work.

Rockall-DB March 2016

3 Introduction | Rockall Software Ltd.

Contents
1. Introduction .. 6

2. What is Rockall-DB? ... 10

3. A Tour of the Rockall-DB Core... 12

4. A Tour of the Rockall-DB Library .. 25

5. The Rockall-DB Core .. 47

5.1. The Rockall-DB Heaps and Types ... 47

5.2. The Rockall-DB Core Functions .. 51

5.2.1. The Delete Function ... 52

5.2.2. The DeleteAll Function.. 53

5.2.3. The Details Function .. 53

5.2.4. The Feature Function ... 54

5.2.5. The GetError Function ... 56

5.2.6. The New Function.. 57

5.2.7. The Resize Function .. 59

5.2.5. The SetError Function.. 60

5.2.8. The Size Function .. 61

5.2.9. The Walk Function .. 61

5.3. The Rockall-DB Transactional Functions .. 63

5.3.1. The CreateFile Function .. 63

5.3.2. The CreateRegion Function ... 65

5.3.3. The BeginTransaction Function ... 66

5.3.4. The ChangeRegion Function ... 67

5.3.5. The ExclusiveView Function ... 68

5.3.6. The EndExclusiveView Function .. 69

5.3.7. The JoinTransaction Function.. 70

5.3.8. The LeaveTransaction Function .. 71

5.3.9. The Update Function.. 71

5.3.10. The View Function .. 72

5.3.11. The EndView Function .. 74

5.3.12. The EndTransaction Function .. 74

5.3.13. The DeleteRegion Function ... 75

5.3.14. The CloseFile Function .. 76

5.4. The Rockall-DB Database Functions.. 77

5.4.1. The CreateShadowFile Function.. 77

5.4.2. The CreateSnapshotFile Function .. 78

5.4.3. The OpenFile Function .. 79

March 2016 Rockall-DB

Rockall Software Ltd. | Introduction 4

5.4.4. The Commit Function .. 80

5.4.5. The FileSize Function .. 81

5.4.6. The GetUserValue Function .. 82

5.4.7. The SetUserValue Function ... 83

5.4.8. The Touch Function ... 84

5.4.9. The CloseShadowFile Function ... 85

6. The Rockall-DB Library .. 86

6.1. The Rockall-DB Library Core .. 86

6.2. The Rockall-DB Library Data Structures ... 86

6.2.1. The AutomaticHeapScope Class.. 87

6.2.2. The FixedString Class .. 93

6.2.3. The FlexibleString Class .. 96

6.2.4 The Hash Class ... 96

6.2.5 The Queue Class ... 100

6.2.6 The RowSet Class ... 103

6.2.7 The Set Class... 104

6.2.8 The Stack Class ... 107

6.2.9 The Tree Class .. 108

6.3. The Rockall-DB Library Lock Classes ... 112

6.3.1. The AutomaticLockScope Class .. 113

6.3.2. The FileLock Class .. 114

6.3.3. The MemoryLock Class ... 114

6.3.4. The NoLock Class.. 115

6.3.5. The TransactionLock Class.. 115

6.4. The Rockall-DB Library Support Classes .. 116

6.4.1. The AsynchronousCallbacks Class .. 116

6.4.2. The AutomaticTransactionScope Class ... 117

6.4.3. The AutomaticViewScope Class ... 119

6.4.4. The LinkedList Class ... 121

6.4.5. The PlacementNew Header.. 123

6.4.6. The RockallDelete Class .. 125

6.4.7. The RockallNew Class ... 126

6.4.8. The RockallTypes Header.. 127

6.4.9. The VirtualDestructor Class .. 128

7. The Rockall-DB Build ... 129

7.1. The Documents Directory ... 129

7.2. The Examples Directory ... 129

Rockall-DB March 2016

5 Introduction | Rockall Software Ltd.

7.2.1. The Boggle Directory .. 129

7.2.1. The Book Directory ... 130

7.2.2. The Dump Directory .. 131

7.2.3. The Manual Directory .. 132

7.2.4. The MultiLanguage Directory ... 132

7.3. The Unix Directory ... 133

7.4. The Windows Directory .. 133

7.4.1. The Include Directory .. 133

7.4.2. The Library Directory .. 134

7.5. A Quick Start Guide.. 134

8. Advice and Guidance ... 135

8.1. Architecture... 135

8.1.1. The Design and Implementation of Multiuser Systems 135

8.1.2. The Design of Storage Structures .. 136

8.1.3. Understanding the Cost Metrics... 137

8.2. Performance .. 142

8.2.1 Asynchronous Read-Ahead .. 142

8.2.2. Automatic Allocation Alignment ... 144

8.2.3. Data Density... 144

8.2.4. Fragmentation .. 144

8.2.5. Storage Optimizations .. 144

8.3. Portability .. 144

8.4. Reliability .. 145

8.4.1. Backups .. 145

8.4.2. Maintenance ... 145

8.4.3. Replication ... 145

8.4.4. Security .. 145

8.4.5. Torn Writes .. 145

8.4.6 Security ... 146

March 2016 Rockall-DB

Rockall Software Ltd. | Introduction 6

1. Introduction
A number of common programming languages (such as ‘C’, C++, C# and Java) allow

software developers to dynamically allocate main memory using function calls or

syntax similar to the following:

MY_TYPE *MemoryAddress = new MY_TYPE;

or
void *MemoryAddress = malloc(sizeof(MY_TYPE));

Now let’s imagine what software development might be like if files and transactional

databases worked in a similar way. In such an environment, the code to allocate some

file space might look something like:

MY_TYPE *FileAddress = new MY_TYPE;

or
void *FileAddress = malloc(sizeof(MY_TYPE));

Unfortunately, it is unlikely that any worthwhile solution could ever be that simple, as

any code would probably need to know the address where the data was stored in the

file (i.e. the file ‘Address’) and also the address where the data was stored in

memory (i.e. the ‘Data’ address). So realistically the code would need to be

something more like the following:

long long int Address;

void *Data;

if (New(& Address,& Data) MY_TYPE)

 { /* Use new file space here */ }

Although this might be a small step forward, it would still not fully resolve all the

issues associated with file management, as a file could still be easily corrupted if a

program crashed while the file was being updated. So in addition, there would need

to be some kind of transactional support similar to databases. This would mean that

the code would need to be more like the following:

if (BeginTransaction())

 {

 long long int Address;

 void *Data;

 if (New(& Address,& Data) MY_TYPE)

 { /* Use new file space here */ }

 EndTransaction();

 }

What we have outlined above is not a dream but something you can actually code

using Rockall-DB. A complete executable example of a small program to

transactionally write ‘Hello World’ into a file is shown in ‘Example-01-01’ below:

Rockall-DB March 2016

7 Introduction | Rockall Software Ltd.

#include <stdio.h>

#include <string.h>

#include "DatabaseHeap.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 if (Heap.BeginTransaction())

 {

 FILE_ADDRESS Address;

 char (*Data)[16];

 if (ROCKALL_NEW<char[16]>::New(& Heap,& Address,& Data))

 { strcpy(((char*) Data),"Hello world !"); }

 Heap.EndTransaction();

 }

 Heap.CloseFile();

 }

 return 0;

 }

Example-01-01

Now that we have covered the basic concept of Rockall-DB let’s move on and see

how it might be used in a more practical example. Let’s take a look at how we could

transactionally build a new table along with 2 related indexes. We shall begin by

taking a look at the necessary definitions and structures in ‘Example-01-02’ below:

#include "DatabaseHeap.hpp"

#include "FixedString.hpp"

#include "NoLock.hpp"

#include "RockallTypes.hpp"

#include "Tree.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,32> STRING;

typedef TREE<HEAP_TYPE,NO_LOCK,int,FILE_ADDRESS> INDEX1;

typedef TREE<HEAP_TYPE,NO_LOCK,STRING,FILE_ADDRESS> INDEX2;

typedef struct

 {

 INDEX1 Index1;

 INDEX2 Index2;

 }

ROOT;

typedef struct

 {

 int Key1;

 STRING Key2;

 STRING Value1;

March 2016 Rockall-DB

Rockall Software Ltd. | Introduction 8

 STRING Value2;

 }

ROW;
Example-01-02

The purpose of ‘Example-01-02’ is not to explain how Rockall-DB works but rather

to give an overall feel for the type of code that is needed to use it. Hopefully, the

above code should be fairly obvious for any developer familiar with languages such

as ‘C’, C++, C# or Java (see chapter 7 for multi-language support). All we are doing

in this code is including a few Rockall-DB modules, making a few type definitions

and specifying a couple of structures.

We see the remainder of the code in ‘Example-01-03’ below. This code creates a new

transactional database, a new transaction and the new indexes. It then builds both the

indexes and adds the all rows using a simple ‘for’ loop. Finally, it ends the

transaction and closes the file.

#include <stdio.h>

#include <string.h>

#include "AutomaticHeapScope.hpp"

#include "Example-01-02.hpp"

#include "RockallNew.hpp"

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 static const int MaxRows = 5;

 static ROW Rows[MaxRows] =

 {

 { 1,"One","Value1","Value2" },

 { 2,"Two","Value3","Value4" },

 { 3,"Three","Value5","Value6" },

 { 4,"Four","Value7","Value8" },

 { 5,"Five","Value9","Value10" }

 };

 if (Heap.BeginTransaction())

 {

 bool Abort = false;

 FILE_ADDRESS Address;

 ROOT *Root;

 if (ROCKALL_NEW<ROOT>::New(& Heap,& Address,& Root))

 {

 int Count;

 for(Count=0;Count < MaxRows;Count ++)

 {

 ROW *Row1 = & Rows[Count];

 ROW *Row2;

 if

 (

Rockall-DB March 2016

9 Introduction | Rockall Software Ltd.

 (ROCKALL_NEW<ROW>::New(& Heap,& Address,& Row2))

 &&

 (Root -> Index1.NewKey(Row1 -> Key1,Address))

 &&

 (Root -> Index2.NewKey(Row1 -> Key2,Address))

)

 { (*Row2) = (*Row1); }

 else

 { Abort = true; }

 }

 }

 else

 { Abort = true; }

 Heap.EndTransaction(Abort);

 }

 Heap.CloseFile();

 }

 return 0;

 }
Example-01-03

Again, the purpose of ‘Example-01-03’ is not to explain how Rockall-DB works but

to give an overall feel for the product. Hopefully, it can be seen that with the required

code in this case is fairly straight-forward. Furthermore, hopefully it is also obvious

that the example could easily be extended to include any number of columns, indexes,

rows or tables.

In summary, what Rockall-DB introduces is a new concept to software development

where the memory allocator also offers all the functionality of a transactional

database. This new concept makes the historical boundaries between main memory,

files and transactional databases simply melt away and throws open the gates to a

dizzying array of new programming paradigms for software developers.

March 2016 Rockall-DB

Rockall Software Ltd. | What is Rockall-DB? 10

2. What is Rockall-DB?
What we have seen in chapter 1 is a very different paradigm for programming

transactional databases. A new methodology that naturally integrates into modern

programming languages and removes the need for historical anachronisms like

embedded SQL statements. A method that is not only simpler but also much faster

because the core interface is based on simple native code procedure calls (see chapter

7 for multi-language support). In Rockall-DB, you can effortlessly obtain amazing

levels of performance because there are no longer any bloated overheads associated

with accessing transactional data. A single CPU core can often achieve performance

levels of around 100,000 transactions per second (tps) for simple transactions. A

simple 10 million row table with an index can be built in around 1 minute 15 seconds

(using a parallel transaction and multiple cores). Alternately, a huge 1 billion row

table with an index can be built in around 3 hours 44 minutes. This is because

Rockall-DB is the sports car of transactional databases. As a developer, all you need

to do is to push down the pedal, hold on tight and feel the surge of power.

What we have seen so far just scratches the surface of Rockall-DB. There is a rich set

of core functionality supporting facilities such as asynchronous I/O, enhancements for

database locality, a high performance C++ version of garbage collection, support for

multithreaded transactions and remote duplicate copies of ‘live’ databases updated in

real-time (i.e. for data security). Additionally, the Rockall-DB library also provides a

variety of pre-built functionality such as hash tables, queues, sets, stacks, strings and

trees (i.e. indexes), with or without encryption, with or without locks, which work in

main memory or within transactional databases. In Rockall-DB, a developer can

construct almost anything from a simple transactional file to column families,

document stores, graph databases, hierarchic databases, key value databases,

multidimensional databases, object oriented databases, relational databases, wide

column stores and XML databases (or any combination of these) within a simple

application or a complex system. In short, almost all of the limitations and

restrictions of traditional databases simply evaporate when using Rockall-DB.

When considering low end or embedded applications Rockall-DB is almost peerless.

Almost no other transactional database has a footprint of under a megabyte (i.e.

1MB). This makes it a wonderful tool for the ‘internet of things’ (i.e. embedded

applications such as cars, cameras, phones) providing all the benefits of a full

transactional database in very low end devices.

While Rockall-DB may appear a little simplistic on the surface it is believed that this

notion quickly dissipates. The key to Rockall-DB’s power is that extends the

traditional memory management programming model (i.e. ‘new’ and ‘delete’) to

fully incorporate the functionality of high end transactional databases. This means

that the boundary between main memory and permanent storage just melts away.

Thus, it becomes trivial to make main memory data formats (i.e. in-memory data) the

same as permanent storage data formats (i.e. on-disk data), leading to dramatic coding

simplifications and yielding sky-high levels of performance. Clearly, combining

these two data formats means that data in storage can be bought directly into main

memory and used immediately, without the any need for additional buffering,

conversions, copying or any other form of data manipulation. Clearly, the structure of

the data can directly match what the program requires as there is no database interface

Rockall-DB March 2016

11 What is Rockall-DB? | Rockall Software Ltd.

or model to get in the way (i.e. no columns, rows or third normal form to consider). A

stored data object can be anything from a simple class (or structure) all the way to

complex compound class (or structure) optionally including arrays, unions,

inheritance or multiple-inheritance. Furthermore, almost everything in Rockall-DB

compiles to native code and so there are no overheads associated with garbage

collectors, interpreters or similar barriers to performance. In short, Rockall-DB is a

very different type of transactional database that works with a developer and not

against them.

The heart of Rockall-DB is simple link library along with an associated dynamic link

library (i.e. ‘RockallDB.lib’ and ‘RockallDB.dll’), so deploying Rockall-DB as

part of an application is easy (i.e. there is nothing to install - just a couple of files to

copy). A Rockall-DB database is a single operating system file and can be stored and

managed just like any other operating system file. It can be put in an e-mail or on a

USB stick and easily moved to wherever it is needed. If security is a concern, there is

a mechanism so it can be encrypted to any level that is required.

Consequently, Rockall-DB means that developers are no longer forced to use

centralize databases but can instead partially or fully decentralize them (i.e. a database

per patient for Medical Records (MRs) instead of a centralized database). Continuing

this thought, Rockall-DB supports some exotic functionality, such as storing multiple

smaller Rockall-DB databases within a single larger database (i.e. nested databases).

These types of features open the way to whole host of new models for data

management, security and storage. Regardless, Rockall-DB can still also be used in

the traditional way to create a traditional huge monolithic multi-terabyte database

containing large numbers of tables and indexes if that is required for some reason. In

short, Rockall-DB is flexible and scalable from just a few of kilobytes all the way to a

few terabytes.

While it is common for transactional databases to use proprietary closed data formats,

this is not the situation with Rockall-DB. Unlike most other transactional databases

Rockall-DB has an open storage placement policy allows the data to remain visible to

developers at all times (unless it is encrypted of course). As an example, if ‘New’ is

used to allocate some space in a Rockall-DB database then the ‘FILE_ADDRESS’

returned is the actual offset (in bytes) of this space from the start of the file.

Consequently, it is always possible to know exactly where any piece of data has been

stored within a Rockall-DB database. Furthermore, unrelated programs can open a

Rockall-DB database and access any piece of stored data without using any part of

product. Consequently, while a lot of products claim they are ‘open’ in reality

Rockall-DB is one of the few products that actually delivers on this promise in a

significant way.

Clearly, it is hard to cover all the facets of Rockall-DB in just a few paragraphs. So in

chapter 3 and chapter 4 below we will take a brief technical tour of the Rockall-DB

core and the Rockall-DB library respectively to highlight a number of its main

features. While some portions of these chapters may occasionally be a little tedious, a

quick read through them should be useful when it comes to the more complex

functionality discussed later in chapter 5 and chapter 6 later.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 12

3. A Tour of the Rockall-DB Core
The heart of Rockall-DB is a common base class named ‘VIRTUAL_HEAP’. This

virtual base class specifies a collection of common functions supported by the entire

family of Rockall-DB heaps. The names of the Rockall-DB heaps are

‘SINGLE_THREADED_HEAP’, ‘MULTI_THREADED_HEAP’, ‘TRANSACTION_HEAP’ and

‘DATABASE_HEAP’.

The simplest and highest performing of the Rockall-DB heaps is

‘SINGLE_THREADED_HEAP’ which supports functionality similar to the functions

‘malloc’, realloc’ and ‘free’ in ‘C’ or ‘new’ and ‘delete’ in C++, C# or

Java. A ‘SINGLE_THREADED_HEAP’ is not thread safe and so cannot be used by more

than one thread at the same time. A ‘MULTI_THREADED_HEAP’ is essentially the same

as a ‘SINGLE_THREADED_HEAP’ but is thread safe and so can be used by multiple

threads at the same time. A ‘TRANSACTION_HEAP’ extends the features of a

‘MULTI_THREADED_HEAP’ by including support for ‘in-memory’ transactions.

Finally, the most powerful heap is a ‘DATABASE_HEAP’ which extends the features of

a ‘TRANSACTION_HEAP’ by including full transactional support for files (i.e. a full

transactional database).

A Rockall-DB heap is a simple class just like any other class in ‘C++’, C# or Java

(see chapter 7 for multi-language support). Consequently, a new Rockall-DB heap

can be created as shown in ‘Example-03-01’ below:

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 return 0;

 }

Example-03-01

It is possible to have any number of heaps. A heap may be free standing or placed

within a data structure such as an array, structure or union. Consequently, we could

specify an array of heaps as shown in ‘Example-03-02’ below:

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap[4];

 return 0;

 }

Example-03-02

Alternatively, we might have an array of different types of heaps as shown in

‘Example-03-03’ below:

#include "SingleThreadedHeap.hpp"

#include "MultiThreadedHeap.hpp"

#include "TransactionalHeap.hpp"

Rockall-DB March 2016

13 A Tour of the Rockall-DB Core | Rockall Software Ltd.

#include "DatabaseHeap.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Type1;

 MULTI_THREADED_HEAP Type2;

 TRANSACTIONAL_HEAP Type3;

 DATABASE_HEAP Type4;

 VIRTUAL_HEAP *Heap[4] = { & Type1,& Type2,& Type3,& Type4 };

 return 0;

 }

Example-03-03

An allocation can be made on any Rockall-DB heap by calling the function ‘New’.

However, we first need to specify a simple class to help illustrate how this works.

The simple class we shall create is called ‘BASIC_CLASS’ and is shown in ‘Example-

03-04’ below:

#include <stdio.h>

class BASIC_CLASS

 {

 public:

 int Value;

 BASIC_CLASS(void) : Value(0)

 { printf("Constructor\n"); }

 ~BASIC_CLASS(void)

 { printf("Destructor\n"); }

 };

Example-03-04

Now, given the ‘BASIC_CLASS’ outlined above we can see how ‘New’ works in

‘Example-03-05’ below:

#include "Example-03-04.hpp"

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 BASIC_CLASS *BasicClass;

 SINGLE_THREADED_HEAP Heap;

 if (Heap.New(((void**) & BasicClass),sizeof(BASIC_CLASS)))

 { BasicClass -> Value = 0; }

 return 0;

 }

Example-03-05

The function ‘New’ does not call the constructor like ‘new’ in C++, C# or Java. It

merely allocates the required amount of space. Obviously, the constructor can be

called in a number of ways as will be seen later.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 14

Although we are currently focusing our discussion on a ‘SINGLE_THREADED_HEAP’

we should remember that almost everything we are seeing also applies equally to all

Rockall-DB heaps. Later, we will see that we can allocate space in a transactional

database by calling ‘New’ on ‘DATABASE_HEAP’ in much the same way as we are

currently allocating space in main memory using a ‘SINGLE_THREADED_HEAP’.

However, for the time being let’s continue our focus on ‘SINGLE_THREADED_HEAP’

and simple memory allocations.

It should be noted that all Rockall-DB heaps (except for ‘DATABASE_HEAP’)

automatically clean up by calling ‘DeleteAll’ when they go out of scope.

Consequently, the memory allocation created in ‘Example-03-05’ above would

automatically be deleted when ‘return 0’ is reached.

A warning message is automatically generated when using the debugging build of

Rockall-DB if all the allocations on a heap are not deleted when it goes out of scope.

This can be suppressed by manually calling ‘DeleteAll’ at the end of the block as

shown in ‘Example-03-06’ below:

#include "Example-03-04.hpp"

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 BASIC_CLASS *BasicClass;

 SINGLE_THREADED_HEAP Heap;

 if (Heap.New(((void**) & BasicClass),sizeof(BASIC_CLASS)))

 { BasicClass -> Value = 0; }

 Heap.DeleteAll();

 return 0;

 }

Example-03-06

Now obviously we need to execute the constructor and destructor in most cases. We

can do this is in a number of ways and we will begin by showing how this can be

done manually for both ‘New’ and ‘Delete’ in ‘Example-03-07’ below:

#include "Example-03-04.hpp"

#include "PlacementNew.hpp"

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 BASIC_CLASS *BasicClass;

 SINGLE_THREADED_HEAP Heap;

 if (Heap.New(((void**) & BasicClass),sizeof(BASIC_CLASS)))

 {

 PLACEMENT_NEW(BasicClass,BASIC_CLASS);

 // 'BASIC_CLASS' ready for use.

 PLACEMENT_DELETE(BasicClass,BASIC_CLASS);

Rockall-DB March 2016

15 A Tour of the Rockall-DB Core | Rockall Software Ltd.

 if (! Heap.Delete(BasicClass))

 { printf("Delete fails\n"); }

 }

 return 0;

 }

Example-03-07

Clearly, manually calling the constructor and destructor in this way is not ideal and so

there is a more automatic way of doing it. Unfortunately, this is not as straight-

forward as might be hoped. It can be seen that the heap’s ‘Delete’ function returns a

‘BOOLEAN’ value that could be ‘False’ (i.e. if the address supplied in

‘BasicClass’ was not currently allocated on the ‘Heap’). Obviously, it is much

better to return ‘False’ than simply crash (i.e. like some heaps), but this does pose a

few extra problems.

Now, if ‘Delete’ did return ‘False’ in this example we would have already

executed the destructor and this may have damaged an area of memory that was not

allocated on the ‘Heap’. Obviously, this would most likely be a fatal error and most

programs would need to terminate.

Unfortunately, C++, C# and Java were designed on the premise of a single heap and

in the belief that calls to ‘delete’ would never need parameters and could never fail.

Consequently, although it would be wonderful to use the built in ‘new’ and ‘delete’

operators it is necessary in Rockall-DB to use the alternatives shown in ‘Example-03-

08’ below:

#include "Example-03-04.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 BASIC_CLASS *BasicClass;

 SINGLE_THREADED_HEAP Heap;

 if (ROCKALL_NEW<BASIC_CLASS>::New(& Heap,& BasicClass))

 {

 // 'BASIC_CLASS' ready for use.

 if (! ROCKALL_DELETE<BASIC_CLASS>::Delete(& Heap,BasicClass))

 { printf("Delete fails\n"); }

 }

 return 0;

 }

Example-03-08

The ‘ROCKALL_NEW’ and ‘ROCKALL_DELETE’ classes return a ‘BOOLEAN’ and

require the target type to be supplied as a template parameter. It is also necessary to

supply a pointer to the desired ‘Heap’ and an appropriately typed instance pointer.

Although this is a little different from the traditional ‘new’ and ‘delete’ operators

hopefully, it is close enough to be comfortable for most developers.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 16

Again, it should be remembered that the functioning of the ‘ROCKALL_NEW’ and

‘ROCKALL_DELETE’ classes also apply to a ‘DATABASE_HEAP’ and so constructors

and destructors would also execute when new allocations were made or deleted in a

transactional database. This is little novel and is something that might not be

immediately expected.

Now, it might be noticed that ‘Example-03-08’ does not help in the situation where

‘DeleteAll’ is used as all the memory allocations would still be deleted without

calling any destructors.

This can be easily overcome but first we will need to extend the ‘BASIC_CLASS’

shown in ‘Example-03-04’ and create a new ‘EXTENDED_CLASS’ as shown in

‘Example-03-09’ below:

#include <stdio.h>

#include "VirtualDestructor.hpp"

class EXTENDED_CLASS : public VIRTUAL_DESTRUCTOR

 {

 public:

 int Value;

 EXTENDED_CLASS(void) : Value(0)

 { printf("Constructor\n"); }

 ~EXTENDED_CLASS(void)

 { printf("Destructor\n"); }

 };

Example-03-09

We can see that the difference between the ‘BASIC_CLASS’ in ‘Example-03-04’ and

the ‘EXTENDED_CLASS’ in ‘Example-03-09’ is that the ‘EXTENDED_CLASS’ inherits

from a new class called ‘VIRTUAL_DESTRUCTOR’.

The ‘VIRTUAL_DESTRUCTOR’ class simply ensures that there is a ‘v-table’ associated

with an object and that the first entry in the ‘v-table’ pointers to its destructor. We

can now use this ‘v-table’ to automatically execute the related destructors as shown in

‘Example-03-10’ below:

#include "Example-03-09.hpp"

#include "RockallNew.hpp"

#include "SingleThreadedHeap.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 EXTENDED_CLASS *ExtendedClass;

 SINGLE_THREADED_HEAP Heap;

 if

 (

 ROCKALL_NEW<EXTENDED_CLASS>::New

 (& Heap,& ExtendedClass,1,NULL,True)

)

Rockall-DB March 2016

17 A Tour of the Rockall-DB Core | Rockall Software Ltd.

 {

 // 'EXTENDED_CLASS' ready for use.

 }

 return 0;

 }

Example-03-10

There are a number of modifications in ‘Example-03-10’ that are worth highlighting.

The call to ‘New’ has gained three extra parameters. The first and second are ‘1’ and

‘NULL’ respectively and these can usually be skipped as they are the default values.

The third is the ‘Destroy’ parameter which is set to ‘True’. When ‘Destroy’ is

‘True’ all Rockall-DB heaps (except ‘DATABASE_HEAP’) assume the class has been

inherited from the ‘VIRTUAL_DESTRUCTOR’ class and will automatically call the

associated destructor via the ‘v-table’ when the a memory allocation is eventually

deleted. In this case, the deletion will occur when ‘return 0’ is reached and

‘SINGLE_THREADED_HEAP’ goes out of scope (as discussed in ‘Example-03-05’ and

‘Example-03-06’ above).

A memory allocation created with ‘Destroy’ is ‘True’ can also be deleted

manually in a number of ways. A simple ‘Delete’ can be used as shown in

‘Example-03-11’ below:

#include "Example-03-09.hpp"

#include "RockallNew.hpp"

#include "SingleThreadedHeap.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 EXTENDED_CLASS *ExtendedClass;

 SINGLE_THREADED_HEAP Heap;

 if

 (

 ROCKALL_NEW<EXTENDED_CLASS>::New

 (& Heap,& ExtendedClass,1,NULL,True)

)

 {

 // 'EXTENDED_CLASS' ready for use.

 if (! Heap.Delete(ExtendedClass))

 { printf("Delete fails\n"); }

 }

 return 0;

 }
Example-03-11

We noted in ‘Example-03-07’ that calling ‘Delete’ did not call the destructor.

However, we now see in ‘Example-03-11’ that when ‘Destroy’ is ‘True’ in the call

to ‘New’ that the destructor will now be called automatically by ‘Delete’.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 18

In some ways, this is better method than we have seen above as the destructor is only

called after the allocation has been found in the ‘Heap’ and so the destructor will

only be executed if necessary.

We can also use the ‘ROCKALL_DELETE’ class as shown in ‘Example-03-12’ below:

#include "Example-03-09.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "SingleThreadedHeap.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 EXTENDED_CLASS *ExtendedClass;

 SINGLE_THREADED_HEAP Heap;

 if

 (

 ROCKALL_NEW<EXTENDED_CLASS>::New

 (& Heap,& ExtendedClass,1,NULL,True)

)

 {

 // 'EXTENDED_CLASS' ready for use.

 if

 (

 ! ROCKALL_DELETE<EXTENDED_CLASS>::Delete

 (& Heap,ExtendedClass)

)

 { printf("Delete fails\n"); }

 }

 return 0;

 }

Example-03-12

What is interesting in this case is the management of the destructor. Clearly, the

destructor would be manually called in the ‘ROCKALL_DELETE’ class before calling

‘Delete’, just like in ‘Example-03-07’. Furthermore, the destructor would also

normally be called again when ‘Delete’ was executed as ‘Destroy’ was set to

‘True’. However, the ‘Delete’ function supports the ‘NoDestroy’ parameter

which suppresses the execution of the destructor if set to ‘True’. Consequently, the

‘NoDestroy’ parameter is used in ‘ROCKALL_DELETE’ to ensure that the destructor

is not executed for a second time.

We can also use ‘DeleteAll’ as shown in ‘Example-03-13’ below:

#include "Example-03-09.hpp"

#include "RockallNew.hpp"

#include "SingleThreadedHeap.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 EXTENDED_CLASS *ExtendedClass;

 SINGLE_THREADED_HEAP Heap;

Rockall-DB March 2016

19 A Tour of the Rockall-DB Core | Rockall Software Ltd.

 if

 (

 ROCKALL_NEW<EXTENDED_CLASS>::New

 (& Heap,& ExtendedClass,1,NULL,True)

)

 {

 // 'EXTENDED_CLASS' ready for use.

 }

 Heap.DeleteAll();

 return 0;

 }

Example-03-13

The ‘DeleteAll’ function is another interesting case. When a number of memory

allocations are made with ‘Destroy’ set to ‘True’ a subsequent call to

‘DeleteAll’ will first call all the destructors on allocations where ‘Destroy’ was

set to ‘True’ (in an efficient but undefined order) and will then delete all of the

memory allocations on the heap. This can be thought of as an efficient C++ form of

garbage collection.

Consequently, an optional programming model for Rockall-DB is to create a number

of heaps for storing memory allocations with different life times. All (or some) of the

memory allocations could be created with ‘Destroy’ set to ‘True’. When one of

these heaps was no longer needed a simple call to ‘DeleteAll’ would efficiently

and reliably delete all the related allocations in a single step.

There are a number of significant advantages of such a memory management model.

The most obvious is the improvement in performance over traditional garbage

collection, as there is no need to track any memory pointers. Another key advantage

is that precisely the right amount of memory can be deleted at precisely the right

points during execution (i.e. say at the end of a transaction). Finally, there is no need

to worry about memory leaks or calling ‘Delete’ (except where this is easy, efficient

or helpful) as a single well-placed call to ‘DeleteAll’ can be used as a ‘catch all’ to

clean up.

We have initially just considered the functionality of the non-transactional heaps,

which are ‘SINGLE_THREADED_HEAP’ and ‘MULTI_THREADED_HEAP’. Let’s now

move on and take a look at what can be done with the transactional heaps, which are

‘TRANSACTIONAL_HEAP’ and ‘DATABASE_HEAP’. These latter heaps require an active

transaction before calling functions such as ‘New’ and ‘Delete’, which was not

previously necessary.

Let’s start by rewriting ‘Example-03-08’ to use ‘DATABASE_HEAP’ instead of a

‘SINGLE_THREADED_HEAP’ in ‘Example-03-14’ below:

#include "DatabaseHeap.hpp"

#include "Example-03-04.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 20

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 if (Heap.BeginTransaction())

 {

 BASIC_CLASS *BasicClass;

 if (ROCKALL_NEW<BASIC_CLASS>::New(& Heap,& BasicClass))

 {

 // 'BASIC_CLASS' ready for use.

 ROCKALL_DELETE<BASIC_CLASS>::Delete(& Heap,BasicClass);

 }

 Heap.EndTransaction();

 }

 Heap.CloseFile();

 }

 return 0;

 }

Example-03-14

The main difference between ‘Example-03-08’ and ‘Example-03-14’ is the call to

‘CreateFile’ and the corresponding call to ‘CloseFile’ and the call to

‘BeginTransaction’ and the corresponding call to ‘EndTransaction’.

Now, as we mentioned previously a ‘DATABASE_HEAP’ supports full transactional

database functionality. Consequently, it is necessary to create a new database file by

first calling ‘CreateFile’ and finally close it by calling ‘CloseFile’. Likewise, we

need to create a transaction scope by calling ‘BeginTransaction’ before we can call

‘New’ or ‘Delete’ and later terminate it by calling ‘EndTransaction’. Excluding

these changes, the remainder of the code is very similar to ‘Example-03-08’.

We note in ‘Example-03-14’ that we create a new database file, make an allocation in

it, immediately delete the new allocation and finally close the file. Clearly, this is not

a very illuminating example. Consequently, let’s now look at something a little more

realistic in ‘Example-03-15’ below:

#include "DatabaseHeap.hpp"

#include "Example-03-04.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 if (Heap.BeginTransaction())

 {

 BASIC_CLASS *BasicClass;

Rockall-DB March 2016

21 A Tour of the Rockall-DB Core | Rockall Software Ltd.

 if (ROCKALL_NEW<BASIC_CLASS>::New(& Heap,& BasicClass))

 { BasicClass -> Value = 1; }

 Heap.EndTransaction();

 }

 Heap.CloseFile();

 }

 return 0;

 }

Example-03-15

We see in ‘Example-03-15’ that we create a new database file using the name

supplied in ’Argument[1]’ and allocate a new ‘BasicClass’ object in the file.

Once we have successfully created the new ‘BasicClass’ object we then set the

‘Value’ member to ‘1’.

We have a bit of a subtle problem in this example, as we have no idea where the new

‘BasicClass’ object is stored in the file. Moreover, even if we did it would not help

as we would probably lose this information when the program reached the ’return

0’ statement.

We can resolve these issues by using some additional features of Rockall-DB as

shown in ‘Example-03-16’ below:

#include "DatabaseHeap.hpp"

#include "Example-03-04.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 if (Heap.BeginTransaction())

 {

 BASIC_CLASS *BasicClass;

 FILE_ADDRESS Address;

 if

 (

 (ROCKALL_NEW<BASIC_CLASS>::

 New(& Heap,& Address,& BasicClass))

 &&

 (Heap.SetUserValue(0,Address))

)

 {

 BasicClass -> Value = 1;

 Heap.EndTransaction(False);

 }

 else

 { Heap.EndTransaction(True); }

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 22

 }

 Heap.CloseFile();

 }

 return 0;

 }

Example-03-16

Now, the first significant change we see is an extra parameter on the call to ‘New’

called ‘Address’. The ‘Address’ parameter is available for all Rockall-DB heaps

but its value is always matches to value of the following ‘Data’ parameter except for

a ‘DATABASE_HEAP’ where it is the offset (in bytes) of the new allocation in the file.

Now that we have the ‘Address’ of the new allocation in the file we need to save it

somewhere so we can find it later. The ‘SetUserValue’ function is available in a

‘DATABASE_HEAP’ and can used to transactionally save the ‘Address’ to a special

reserved area in the file. We will see later that when we need the ‘Address’ again

we can call the ‘GetUserValue’ function to retrieve it.

The ‘Abort’ parameter is the first parameter to the ‘EndTransaction’ function. In

‘Example-03-16’ we see that if everything works as expected that ‘Abort’ is set to

‘False’ but if there are problems ‘Abort’ is set to ‘True’. When ‘Abort’ is set to

‘True’ the call to ‘EndTransaction’ will undo all calls between the matching

‘BeginTransaction’ and ‘EndTransaction’ to the functions ‘Delete’, ‘New’,

‘Resize’, ‘SetUserValue’, and ‘Update’. In ‘Example-03-16’ above, this would

undo all of the changes that have been made.

Now we have created a simple database with Rockall-DB. Let’s take a look at how we

could write a program read the data that was stored in it. Again, we will be using

some of the additional features of Rockall-DB as shown in ‘Example-03-17’ below:

#include <stdio.h>

#include "DatabaseHeap.hpp"

#include "Example-03-04.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 if ((Count == 2) && (Heap.OpenFile(Argument[1])))

 {

 if (Heap.BeginTransaction())

 {

 BASIC_CLASS *BasicClass;

 FILE_ADDRESS Address;

 if

 (

 (Heap.GetUserValue(0,& Address))

 &&

Rockall-DB March 2016

23 A Tour of the Rockall-DB Core | Rockall Software Ltd.

 (Heap.View(Address,((VOID**) & BasicClass)))

)

 { printf("The value is %d\n",BasicClass -> Value); }

 Heap.EndTransaction();

 }

 Heap.CloseFile();

 }

 return 0;

 }

Example-03-17

Now, the first significant change we see is a call to the ‘OpenFile’ function to

reopen the file we created in the ‘Example-03-16’ above. Next, we see a call to the

‘GetUserValue’ function to reclaim the ‘Address’ we saved using

‘SetUserValue’ in the previous example. Next, we call the ‘View’ function to load

the allocation back into memory from the file and return a pointer to it in

‘BasicClass’. We can now access the data stored in the previous example via the

returned pointer in the usual way.

There are a number of calls we could have used instead of the ‘View’ function, such

as ‘ExclusiveView’ and ‘Update’. An ‘ExclusiveView’ and a ‘View’ are similar

in that they permit an area allocated by ‘New’ to be examined (i.e. read only) while

holding a lock on it. In the case of ‘ExclusiveView’ it is a mutually exclusive lock

whereas in the case of ‘View’ it is a sharable lock. A call to ‘Update’ claims an

exclusive lock like ‘ExclusiveView’ but also takes a copy of the entire area

allocated by ‘New’, so that the any changes to the area can be reversed if necessary.

After any changes have been made they can be committed by a suitable call to

‘EndTransaction’ (i.e. a call without ‘Abort’ set to ‘True’).

A call to ‘ExclusiveView’ can optionally be terminated by a call to

‘EndExclusiveView’. Also, a call to ‘View’ can optionally be terminated by a call

to ‘EndView’. Regardless, a call to ‘EndTransaction’ will terminate the transaction

and terminate all outstanding calls to ‘ExclusiveView’, ‘Update’ and ‘View’.

The ‘ExclusiveView’, ‘Update’ and ‘View’ functions use sophisticated database

oriented locks which incorporate ‘Automatic Deadlock Detection’. Consequently, all

of these functions may legitimately return ‘False’ for reasons such as an invalid

‘Address’, a deadlock, a file transfer error or some other issue. Consequently, a

developer must always have a strategy for recovering if this occurs. Typically, this is

not hard and typically involves aborting the current transaction and simply trying

again.

A ‘TRANSACTIONAL_HEAP’ is very similar a ‘DATABASE_HEAP’ in most respects

except that all of the operations are carried out in main memory rather than in a file.

Additionally, like the non-transactional heaps ‘SINGLE_THREADED_HEAP’ and a

‘MULTI_THREADED_HEAP’ it will also automatically call ‘DeleteAll’ and clean up

when it goes out of scope.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Core 24

In closing, we have quickly skimmed over some of the main features of the Rockall-

DB core. A full description of all of the functions mentioned in this section along

with a number of larger examples is available in chapter 5 below. We have also

skipped over a few of the more advanced Rockall-DB core features, such as

asynchronous I/O, data locality, parallelism and shadow files. These are also covered

in in chapter 5 below.

Next, we shall take a tour of the Rockall-DB library. The Rockall-DB library

contains a significant quantity of pre-built functionality, such as hash tables, queues,

sets, stacks, strings and trees. Furthermore, the Rockall-DB library is supplied in

source form and so it is sometimes useful as a source of helpful ideas, methodologies

and techniques.

Rockall-DB March 2016

25 A Tour of the Rockall-DB Library | Rockall Software Ltd.

4. A Tour of the Rockall-DB Library
A significant amount of the benefit provided by Rockall-DB is derived from the

Rockall-DB library. The Rockall-DB library is a collection of well-known data

structures that work with all of the Rockall-DB heaps. The Rockall-DB library is

supplied as source form (i.e. C++) and so can be easily analyzed, modified and

optimized as required. The main restriction on the Rockall-DB library (or a derivative

work) is that any use of it constitutes use of the product and so must comply with the

associated product licensing terms.

The Rockall-DB library contains classes for hash tables, queues, sets, stacks, strings

and trees (i.e. indexes). All of these classes are C++ templates and are typically

automatically optimized by the C++ compiler for specific heaps, types of locking and

data types. Moreover, there are some very powerful and unusual features available in

the Rockall-DB library, such as massive multi-way trees for multi-terabyte databases

(i.e. including up to 16k branching factors per node). Nonetheless, just to keep things

simple let’s begin with the straight-forward stack oriented functionality as shown in

‘Example-04-01’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "Failure.hpp"

#include "Stack.hpp"

static void PushAndPop(void)

 {

 STACK<DATABASE_HEAP,NO_LOCK,int> Stack;

 static const int MaxCycles = 100;

 int Count;

 int Value;

 for

 (

 Count=0;

 (Count < MaxCycles) && (Stack.PushValue(Count));

 Count ++

);

 if (Count < MaxCycles)

 { FAILURE("Unable to push all the values"); }

 for

 (

 /* void */;

 (Count > 0) && (Stack.PopValue(& Value));

 Count --

);

 if (Count > 0)

 { FAILURE("Unable to pop all the values"); }

 }

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 AUTOMATIC_HEAP_SCOPE<DATABASE_HEAP> Scope(& Heap);

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 26

 if ((Count == 2) && (Heap.CreateFile(Argument[1])))

 {

 PushAndPop();

 Heap.CloseFile();

 }

 return 0;

 }

Example-04-01

We can see in ‘Example-04-01’ that the code creates a new database and then

transactionally pushes and pops 100 integers on and off a stack. It may be noted that

the code is very similar to what would normally be written for an in-memory stack.

Regardless, there are a few differences which we will cover below.

The first significant difference is in the use of the ‘STACK’ class. The ‘STACK’

class takes three template parameters. The first template parameter specifies type of

heap to be used and would normally be ‘SINGLE_THREADED_HEAP’,

‘MULTI_THREADED_HEAP’, ‘TRANSACTIONAL_HEAP’ or ‘DATABASE_HEAP’. This

first template parameter allows the resulting object code to be automatically

optimized by the C++ compiler for the selected heap. Alternately, ‘VIRTUAL_HEAP’

may be used if the type of heap is unknown or if different types of heap are used in

different instances of the object. The second template parameter specifies the type of

locking to be used and would normally be ‘NO_LOCK’, ‘MEMORY_LOCK’ or

‘FILE_LOCK’. All of these lock types can be used in conjunction with any of the

Rockall-DB heaps except for ‘MEMORY_LOCK’ which cannot be used in conjunction

with a ‘DATABASE_HEAP’ (as obviously an in-memory lock cannot be stored in a

transactional database). Finally, the third template parameter specifies the type of the

object to be stored in the ‘STACK’. We see in ‘Example-04-01’ that it is an ‘int’ but

it could be any class, structure or type that has a suitable assignment operator (i.e. a

‘double’, a ‘FIXED_STRING’, a ‘FLEXIBLE_STRING’, a ‘float’, a ‘long long’

and so on).

A call to ‘PushValue’ is used to push a new value onto the ‘STACK’ and a call to

‘PopValue’ is used to pop a value off the ‘STACK’ respectively. Hopefully, this is

straight-forward and so needs little explanation.

The next significant difference is the use of the ‘AUTOMATIC_HEAP_SCOPE’ class. All

of the Rockall-DB data structures (i.e. ‘FIXED_STRING’, ‘FLEXIBLE_STRING’,

‘HASH’, ‘QUEUE’, ‘ROW_SET’, ‘SET’, ‘STACK’ and ‘TREE’) require at least one

active instance of the ‘AUTOMATIC_HEAP_SCOPE’ class on the stack in order to

function correctly.

The ‘AUTOMATIC_HEAP_SCOPE’ class provides vital information about the heap to be

used to the related classes. This information cannot be stored in the class directly as it

contains memory pointers and all of The Rockall-DB library classes can be written to

file (i.e. when using a ‘DATABASE_HEAP’). Furthermore, this information cannot be

consistently passed as parameters as destructors in C++ are not permitted to have

parameters. Consequently, it is there is no alternative to managing this information in

the ‘AUTOMATIC_HEAP_SCOPE’ class, which we will discuss further below.

Rockall-DB March 2016

27 A Tour of the Rockall-DB Library | Rockall Software Ltd.

All of the heaps in Rockall-DB are derived from the base class ‘VIRTUAL_HEAP’.

The ‘AUTOMATIC_HEAP_SCOPE’ class supports the exactly same interface as

‘VIRTUAL_HEAP’ and in most cases an instance can be used as a direct substitute for

any of the Rockall-DB heaps. The ‘AUTOMATIC_HEAP_SCOPE’ class takes a template

parameter which specifies type of heap to be used and would normally be

‘SINGLE_THREADED_HEAP’, ‘MULTI_THREADED_HEAP’, ‘TRANSACTIONAL_HEAP’ or

‘DATABASE_HEAP’ just like we saw previously with ‘STACK’. Again, this template

parameter allows the resulting object code to be automatically optimized by the C++

compiler specifically for the selected type of heap. Also, ‘VIRTUAL_HEAP’ may be

used if the type of heap is unknown or if different types of heap are to be used in

different instances of the related objects.

Now, let’s have a closer look at the ‘AUTOMATIC_HEAP_SCOPE’ class to better

understand how it works. We will modify ‘Example-04-01’ to create a new

‘Example-04-02’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "Failure.hpp"

#include "Stack.hpp"

static void PushAndPop(void)

 {

 AUTOMATIC_HEAP_SCOPE<DATABASE_HEAP> Scope;

 if (Scope.BeginTransaction())

 {

 STACK<DATABASE_HEAP,NO_LOCK,int> Stack(& Scope);

 static const int MaxCycles = 100;

 int Count;

 int Value;

 for

 (

 Count=0;

 (Count < MaxCycles) && (Stack.PushValue(& Scope,Count));

 Count ++

);

 if (Count < MaxCycles)

 { FAILURE("Unable to push all the values"); }

 for

 (

 /* void */;

 (Count > 0) && (Stack.PopValue(& Scope,& Value));

 Count --

);

 if (Count > 0)

 { FAILURE("Unable to pop all the values"); }

 }

 }

int main(int Count,char *Argument[])

 {

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 28

 DATABASE_HEAP Heap;

 AUTOMATIC_HEAP_SCOPE<DATABASE_HEAP> Scope(& Heap);

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

 PushAndPop();

 Scope.CloseFile();

 }

 return 0;

 }

Example-04-02

The first change we note in ‘Example-04-02’ is the addition of a new

‘AUTOMATIC_HEAP_SCOPE’ instance called ‘Scope2’. While it would have been

more efficient to simply pass a pointer to ‘Scope1’ as a parameter to the

‘PushAndPop’ function we have coded the example this way to highlight an

important point.

The new instance ‘Scope2’ will automatically inherit all its initial values from the

nearest matching instance of ‘AUTOMATIC_HEAP_SCOPE’ (in this case ‘Scope1’)

unless new values are supplied in its constructor. As no new values are supplied in

this case ‘Scope2’ it will inherit all its values from ‘Scope1’ and so ‘Scope2’

will be functionally identical to ‘Scope1’. Consequently, a call

‘Scope1.GetHeap()’ will return the same result as a call ‘Scope2.GetHeap()’

even though on the surface these two instances appear to be unrelated. This is the

mechanism most of the Rockall-DB library uses to find the heap for Rockall-DB

library classes such as ‘FIXED_STRING’, ‘FLEXIBLE_STRING’, ‘HASH’, ‘QUEUE’,

‘ROW_SET’, ‘SET’, ‘STACK’ and ‘TREE’.

The next significant change is the addition of a new call to

‘Scope2.BeginTransaction()’. Now, in ‘Example-04-01’ we did not call

‘BeginTransaction’ and so the ‘STACK’ class would have been forced to

automatically make calls to ‘BeginTransaction’ and ‘EndTransaction’ within

each call of ‘PushValue’ and ‘PopValue’. Consequently, as there are 100 calls of

each function, the ‘STACK’ class would have created 200 separate transactions (i.e.

calls to ‘BeginTransaction’ and ‘EndTransaction’). Obviously, this is not very

efficient. Now, by making a single call to ‘Scope2.BeginTransaction()’ at the

outer scope this will reduce the total number of transactions from 200 to 1. This

significant reduction occurs because it is no longer necessary to automatically create

any new transactions within the ‘PushValue’ and ‘PopValue’ calls, as one already

exists.

It may be noticed that the ‘FastPushAndPop’ function does not contain a call to

‘EndTransaction’. This is not necessary as ‘AUTOMATIC_HEAP_SCOPE’

automatically calls ‘EndTransaction’ if there is an unmatched call to

‘BeginTransaction’ when it goes out of scope. A call to ‘EndTransaction’ can

be made at any point within an ‘AUTOMATIC_HEAP_SCOPE’ but this is an option rather

than being a necessity.

Rockall-DB March 2016

29 A Tour of the Rockall-DB Library | Rockall Software Ltd.

Finally, it may have be noticed that the calls to the constructor for ‘Stack’ and the

functions ‘PushValue’ and ‘PopValue’ are now been passed ‘Scope2’ as the first

parameter. This is an optimization as it saves these calls from internally creating a

third instance of ‘AUTOMATIC_HEAP_SCOPE’ just so they can call ‘GetHeap’ to

access the related heap. Again, this is an option and is only done to improve

efficiency and performance.

Now, let’s go a step further and show how a single piece of generic code can be

written that supports all of the Rockall-DB heaps. We will modify ‘Example-04-02’

to create a new ‘Example-04-03’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "MultiThreadedHeap.hpp"

#include "Failure.hpp"

#include "SingleThreadedHeap.hpp"

#include "Stack.hpp"

#include "TransactionalHeap.hpp"

static void PushAndPop(void)

 {

 AUTOMATIC_HEAP_SCOPE<VIRTUAL_HEAP> Scope;

 if (Scope.BeginTransaction())

 {

 STACK<VIRTUAL_HEAP,NO_LOCK,int> Stack(& Scope);

 static const int MaxCycles = 100;

 int Count;

 int Value;

 for

 (

 Count=0;

 (Count < MaxCycles) && (Stack.PushValue(& Scope,Count));

 Count ++

);

 if (Count < MaxCycles)

 { FAILURE("Unable to push all the values"); }

 for

 (

 /* void */;

 (Count > 0) && (Stack.PopValue(& Scope,& Value));

 Count --

);

 if (Count > 0)

 { FAILURE("Unable to pop all the values"); }

 }

 }

int main(int Count,char *Argument[])

 {

 if (Count == 2)

 {

 SINGLE_THREADED_HEAP Heap1;

 MULTI_THREADED_HEAP Heap2;

 TRANSACTIONAL_HEAP Heap3;

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 30

 DATABASE_HEAP Heap4;

 VIRTUAL_HEAP *Heaps[4] = { & Heap1,& Heap2,& Heap3,& Heap4 };

 int Count;

 for (Count=0;Count < 4;Count ++)

 {

 AUTOMATIC_HEAP_SCOPE<VIRTUAL_HEAP> Scope(Heaps[Count]);

 if (Scope.CreateFile(Argument[1]))

 {

 PushAndPop();

 Scope.CloseFile();

 }

 }

 }

 return 0;

 }

Example-04-03

What we see in ‘Example-04-03’ is that any code based on

‘AUTOMATIC_HEAP_SCOPE’ and designed to work with a ‘DATABASE_HEAP’ will also

work with all the other types of Rockall-DB heap (i.e. ‘SINGLE_THREADED_HEAP’,

‘MULTI_THREADED_HEAP’ and ‘TRANSACTIONAL_HEAP’). This feature is one of the

cornerstones of the Rockall-DB library. What happens is that all the unnecessary

calls are automatically ignored on by heaps that do not support these functions.

Clearly, it would be reasonable to question the performance of any code written in

this way. Nonetheless, we will see later that almost all of the related inefficiencies are

usually optimized away by the C++ compiler. The key to all of these optimizations is

another feature of the ‘AUTOMATIC_HEAP_SCOPE’ class and is discussed below.

We can see that the function ‘PushAndPop’ has hardly changed from ‘Example-04-

02’ except for the references to ‘DATABASE_HEAP’ have changed to the more generic

‘VIRTUAL_HEAP’. Additionally, the function ‘main’ has been modified to include all

four types of heap and a loop has been added to call ‘PushAndPop’ for each of them

in turn. Finally, the ‘AUTOMATIC_HEAP_SCOPE’ template has also been changed from

‘DATABASE_HEAP’ to the more generic ‘VIRTUAL_HEAP’.

Clearly, a call to functions such as ‘CreateFile’, ‘ExclusiveView’, ‘Update’,

‘View’ and ‘CloseFile’ should fail on a ‘SINGLE_THREADED_HEAP’ or

‘MULTI_THREADED_HEAP’ as they have no meaning and are not implemented in these

heaps. However, the ‘AUTOMATIC_HEAP_SCOPE’ class simply skips these calls (or

optimizes them away in most situations) for a ‘SINGLE_THREADED_HEAP’ or

‘MULTI_THREADED_HEAP’ but retains them for a ‘TRANSACTIONAL_HEAP’ or a

‘DATABASE_HEAP’. Consequently, when using the ‘AUTOMATIC_HEAP_SCOPE’ class it

is ‘as if’ all Rockall-DB heaps supported the same functionality. Now, this illusion is

very shallow as all the unsupported calls simply do nothing but still return ‘True’.

Although trivial, this simple mechanism it is powerful enough to permit generic code

to be written in Rockall-DB in most situations.

Rockall-DB March 2016

31 A Tour of the Rockall-DB Library | Rockall Software Ltd.

An analysis of the Rockall-DB library will show that this methodology is extensively

used to make the code in the library generic. Now, it might be argued that even a

small amount of additional code could impact performance and so be undesirable.

However, a closer inspection will show that the C++ compiler typically optimizes all

the additional code to nothing and so effectively removes it. Let’s consider the case

of ‘NO_LOCK’ from the Rockall-DB library in ‘Example-04-04’ below:

#include "BaseTypes.hpp"

#include "ReservedWords.hpp"

#include "RockallTypes.hpp"

class NO_LOCK

 {

 public:

 NO_LOCK(VOID)

 { /* void */ }

 BOOLEAN ClaimExclusiveLock(BOOLEAN Wait = True)

 { return True; }

 BOOLEAN ClaimSharedLock(BOOLEAN Wait = True)

 { return True; }

 VOID ReleaseExclusiveLock(VOID)

 { /* void */ }

 VOID ReleaseSharedLock(VOID)

 { /* void */ }

 ~NO_LOCK(VOID)

 { /* void */ }

 };

Example-04-04

Now, we saw in ‘Example-04-03’ that the second template parameter to ‘STACK’ was

related to locking and in this case was passed the value ‘NO_LOCK’. We can now see

from ‘Example-04-04’ that the ‘NO_LOCK’ class does not contain any executable

code. Consequently, anything but the lowest quality compiler should entirely

optimize any reference to it away. We also saw in ‘Example-04-03’ that the first

template parameter to ‘STACK’ was the type of heap. Again, the reason for this is to

permit the C++ compiler to do similar optimizations, as we shall see from ‘Example-

04-05’ below:

#include "AutomaticHeapScope.hpp"

#include "SingleThreadedHeap.hpp"

int main(int Count,char *Argument[])

 {

 SINGLE_THREADED_HEAP Heap;

 AUTOMATIC_HEAP_SCOPE<SINGLE_THREADED_HEAP> Scope(& Heap);

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

 if (Scope.BeginTransaction())

 { return 1; }

 }

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 32

 return 0;

 }

Example-04-05

The ‘AUTOMATIC_HEAP_SCOPE’ class has been coded to understand the different types

of Rockall-DB heaps. The source code in ‘Example-04-05’ contains multiple ‘if’

statements. Nonetheless, after C++ compiler optimization phase all that is typically

left is shown in ‘Example-04-06’ below:

#include "AutomaticHeapScope.hpp"

#include "SingleThreadedHeap.hpp"

int main(int Count,char *Argument[])

 {

 SINGLE_THREADED_HEAP Heap;

 AUTOMATIC_HEAP_SCOPE<SINGLE_THREADED_HEAP> Scope(& Heap);

 if (Count == 2)

 { return 1; }

 return 0;

 }

Example-04-06

The reduction in code occurs because the ’AUTOMATIC_HEAP_SCOPE’ class knows

that a ‘SINGLE_THREADED_HEAP’ does not implement various functions, such as

‘CreateFile’, ‘OpenFile’, ‘BeginTransaction’, ‘ExclusiveView’,

‘EndExclusiveView’, ‘Update’, ‘View’, ‘EndView’, ‘EndTransaction’ and

‘CloseFile’. Consequently, it arranges for these functions to be optimized away in

much the same way as ‘NO_LOCK’ was optimized away in ‘Example-04-04’.

We have now covered the basics of the ’AUTOMATIC_HEAP_SCOPE’ class so let’s

move on to take a quick look at ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes.

We are only covering these two classes as they help demonstrate some of the more

powerful features of the Rockall-DB library. Let’s take a quick look at ‘Example-04-

07’ below:

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "FlexibleString.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<SINGLE_THREADED_HEAP> Scope(& Heap);

 FIXED_STRING<SINGLE_THREADED_HEAP,CHAR,64> String1 = "String1";

 FIXED_STRING<SINGLE_THREADED_HEAP,CHAR,64> String2 = "String2";

 FIXED_STRING<SINGLE_THREADED_HEAP,WCHAR,64> String3 = L"String3";

 FIXED_STRING<SINGLE_THREADED_HEAP,WCHAR,64> String4 = L"String4";

 FLEXIBLE_STRING<SINGLE_THREADED_HEAP,CHAR> String5 = "String5";

 FLEXIBLE_STRING<SINGLE_THREADED_HEAP,CHAR> String6 = "String6";

 FLEXIBLE_STRING<SINGLE_THREADED_HEAP,WCHAR> String7 = L"String7";

Rockall-DB March 2016

33 A Tour of the Rockall-DB Library | Rockall Software Ltd.

 FLEXIBLE_STRING<SINGLE_THREADED_HEAP,WCHAR> String8 = L"String8";

 CHAR String9[10] = "String9";

 WCHAR String10[10] = L"String10";

 if ((String1 != String2) && (String1 != String9))

 {

 String2 = String1;

 String2 = String3;

 String2 = String5;

 String2 = String7;

 String2 = String9;

 String2 = String10;

 String2 = String1;

 String2 += " & ";

 String2 += String1;

 String2 += " & ";

 String2 += String5;

 String2 += " & ";

 String2 += String9;

 }

 if ((String3 != String4) && (String3 != String10))

 {

 String4 = String1;

 String4 = String3;

 String4 = String5;

 String4 = String7;

 String4 = String9;

 String4 = String10;

 String4 = String3;

 String4 += L" & ";

 String4 += String3;

 String4 += L" & ";

 String4 += String7;

 String4 += L" & ";

 String4 += String10;

 }

 if ((String5 != String6) && (String5 != String9))

 {

 String6 = String1;

 String6 = String3;

 String6 = String5;

 String6 = String7;

 String6 = String9;

 String6 = String10;

 String6 = String5;

 String6 += " & ";

 String6 += String1;

 String6 += " & ";

 String6 += String5;

 String6 += " & ";

 String6 += String9;

 }

 if ((String7 != String8) && (String7 != String10))

 {

 String8 = String1;

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 34

 String8 = String3;

 String8 = String5;

 String8 = String7;

 String8 = String9;

 String8 = String10;

 String8 = String7;

 String8 += L" & ";

 String8 += String3;

 String8 += L" & ";

 String8 += String7;

 String8 += L" & ";

 String8 += String10;

 }

 return 0;

 }

Example-04-07

First, we see in ‘Example-04-07’ that strings (i.e. ‘FIXED_STRING’ or

‘FLEXIBLE_STRING’) or constants of the same type can be compared together using

the ‘==’, ‘!=’, ‘>’, ‘>=’, ‘<’ and ‘<=’ operators.

Next, we see that the value of a ‘FIXED_STRING’ can be assigned to a

‘FLEXIBLE_STRING’ or vice versa. We also see that a ‘FIXED_STRING’ or

‘FLEXIBLE_STRING’ can be assigned a constant value. Additionally, a value of type

‘CHAR’ can be assigned to a string of type ‘WCHAR’ or vice versa.

Finally, we see that strings (i.e. ‘FIXED_STRING’ or ‘FLEXIBLE_STRING’) or

constants of the same type can be joined together using the ‘+=’ operator.

In summary, the Rockall-DB string classes are flexible but fairly basic. They only

exist so that they may be used as keys or values in more advanced classes like

‘HASH’, ‘SET’ and ‘TREE’, as these classes require their keys to support the

assignment and comparison operators.

Now we understand the basics of ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ let’s

move on to take a look at the ‘HASH’, ‘SET’ and ‘TREE’ classes. We will begin

with the ‘HASH’ class but first we need to specify a structure in ‘Example-04-08’

below:

#include "FixedString.hpp"

#include "SingleThreadedHeap.hpp"

static const int MaxDetails = 4;

static const int MaxName = 10;

typedef struct

 {

 char Forename[MaxName];

 char Surname[MaxName];

 char Postcode[MaxName];

 }

DETAILS;

static DETAILS Details[MaxDetails] =

Rockall-DB March 2016

35 A Tour of the Rockall-DB Library | Rockall Software Ltd.

 {

 { "Albert", "Adams", "SW1 1AA" },

 { "Clive", "Butler", "SW1 1AB" },

 { "Michael", "Jones", "SW1 1AC" },

 { "Jeff", "Smith", "SW1 1AA" }

 };

Example-04-08

What we see in ‘Example-04-08’ is a small database of names and postcodes which

we will use in later examples. Clearly, in a more realistic application there would be

many more names and extra information, such as addresses, phone numbers and so

forth. Furthermore, all this information would likely be read in from a file or some

other data source. Regardless, just to keep things simple let’s stick to the information

provided in ‘Example-04-08’.

Now, let’s consider the code outlined in ‘Example-04-09’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "Example-04-08.hpp"

#include "Failure.hpp"

#include "Hash.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,MaxName> NAME;

typedef HASH<HEAP_TYPE,NO_LOCK,NAME,DETAILS*> INDEX;

static bool CreateIndex(INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 int Count;

 for (Count=0;Count < MaxDetails;Count ++)

 {

 DETAILS *Current = & Details[Count];

 NAME Name1 = Current -> Forename;

 NAME Name2 = Current -> Surname;

 if

 (

 (! Index -> NewKey(& Scope,Name1,Current))

 ||

 (! Index -> NewKey(& Scope,Name2,Current))

)

 { FAILURE("Unable to add key"); }

 }

 return (Count == MaxDetails);

 }

static void FindKey(char *Name,INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 NAME Key = Name;

 DETAILS *Target;

 if (Index -> FindKey(& Scope,Key,& Target))

 {

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 36

 printf

 (

 "The details are: '%s %s' at '%s'\n",

 Target -> Forename,

 Target -> Surname,

 Target -> Postcode

);

 }

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 INDEX Index;

 if (CreateIndex(& Index))

 { FindKey(Details[2].Forename,& Index); }

 return 0;

 }

Example-04-09

We see in ‘Example-04-09’ that we can easily create an in memory ‘HASH’ table

called ‘Index’ that maps ‘NAME’ (i.e. a ‘FIXED_STRING’) to a pointer to

‘DETAILS’. We also see later that the values for ‘Forename’ and ‘Surname’ for all

the ‘Names’ are added into the ‘Index’ using the ‘NewKey’ function.

It might be considered a mistake to add both ‘Forename’ and ‘Surname’ into the

same ‘Index’, as a traditional relational database would normally to have one index

for ‘Forename’ and a second index for ‘Surname’. However, what we are doing

here is highlighting the flexibility of Rockall-DB. In some cases, two indexes might

be more appropriate and this can easily be implemented by adding a second ‘Index’.

Nonetheless, in this case we are considering the situation where customers might

calling on the telephone and so we might need to find their records based on the

whatever information they have available (which may vary). In this situation, having

‘Forename’ and ‘Surname’ in the same ‘Index’ could be advantageous.

Regardless, it is certainly quite a bit easier. Furthermore, we could add extra fields

into the ‘Index’, such as telephone numbers, street names or other information, as

we will discuss below.

Let’s extend ‘Example-04-09’ to make it a transactional database by using a

‘DATABASE_HEAP’ in ‘Example-04-10’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "AutomaticViewScope.hpp"

#include "Example-04-08.hpp"

#include "Failure.hpp"

#include "Hash.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,MaxName> NAME;

Rockall-DB March 2016

37 A Tour of the Rockall-DB Library | Rockall Software Ltd.

typedef HASH<HEAP_TYPE,NO_LOCK,NAME,FILE_ADDRESS> INDEX;

static bool CreateIndex(INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 int Count;

 for (Count=0;Count < MaxDetails;Count ++)

 {

 DETAILS *Current1 = & Details[Count];

 NAME Name1 = Current1 -> Forename;

 NAME Name2 = Current1 -> Surname;

 FILE_ADDRESS Address;

 DETAILS *Current2;

 if

 (

 (ROCKALL_NEW<DETAILS>::New(& Scope,& Address,& Current2))

 &&

 (Index -> NewKey(& Scope,Name1,Address))

 &&

 (Index -> NewKey(& Scope,Name2,Address))

)

 { (*Current2) = (*Current1); }

 else

 { FAILURE("Unable to add key"); }

 }

 return (Count == MaxDetails);

 }

static void FindKey(char *Name,INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 FILE_ADDRESS Address;

 NAME Key = Name;

 if (Index -> FindKey(& Scope,Key,& Address))

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> ViewScope(& Scope);

 DETAILS *Target;

 if (ViewScope.View(Address,((void**) & Target)))

 {

 printf

 (

 "The details are: '%s %s' at '%s'\n",

 Target -> Forename,

 Target -> Surname,

 Target -> Postcode

);

 }

 }

 }

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 if ((Count==2) && (Scope.CreateFile(Argument[1])))

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 38

 {

 if (Scope.BeginTransaction())

 {

 INDEX Index;

 if (CreateIndex(& Index))

 { FindKey(Details[2].Forename,& Index); }

 Scope.EndTransaction();

 }

 Scope.CloseFile();

 }

 return 0;

 }

Example-04-10

We can see from ‘Example-04-10’ that using a ‘DATABASE_HEAP’ makes things a

little more complex. Clearly, we can’t store a memory address to ‘DETAILS’ in the

‘Index’ as memory addresses can’t be reliabily stored and retieved when using

transactional databases. Instead, we need to allocate some new space using

‘ROCKALL_NEW’ and then store the returned ‘FILE_ADDRESS’ (called ‘Address’) in

the ‘Index’ in place of the memory address in ‘Example-04-09’.

We can see that this also makes using ‘FindValue’ a little harder as well. When we

call ‘FindValue’ we will be returned a ‘FILE_ADDRESS’ from the ‘Index’ and so

we need to call ‘View’ to bring the ‘DETAILS’ back into memory from the

database. In this case, we use the ‘AUTOMATIC_VIEW_SCOPE’ class to automatically

call the ‘EndView’ function at the end of the scope for us, just to make things a bit

easier.

Although the code is now a little more complex this does not seem to be

disproportionate, considering that we upgraded our example to be a fully transactional

database. As an aside, it may be noted that simply changing the ‘HEAP_TYPE’ from

‘DATABASE_HEAP’ to ‘SINGLE_THREADED_HEAP’ would effectively make ‘Example-

04-10’ the same as ‘Example-04-09’ above. The resulting object code would be also

be very similar, as much of the additional code in ‘Example-04-10’ would simply be

optimised away by the C++ compiler as discussed previously.

Now we have upgraded ‘Example-04-09’ to be a transactional database in ‘Example-

04-10’ let’s say that we would like to add the ‘Postcode’ into the ‘Index’. This is a

little tricky because the ‘Postcode’ contains duplicates and none of the Rockall-DB

library classes support duplicate keys. Let’s take a look at how this is done in

‘Example-04-11’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "AutomaticViewScope.hpp"

#include "Example-04-08.hpp"

#include "Failure.hpp"

#include "Hash.hpp"

#include "RockallNew.hpp"

Rockall-DB March 2016

39 A Tour of the Rockall-DB Library | Rockall Software Ltd.

#include "RockallTypes.hpp"

#include "RowSet.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,MaxName> NAME;

typedef HASH<HEAP_TYPE,NO_LOCK,NAME,FILE_ADDRESS> INDEX;

typedef ROW_SET<HEAP_TYPE,NO_LOCK> ROWS;

static bool NewKey(FILE_ADDRESS Address,NAME & Name,INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 FILE_ADDRESS Duplicates;

 ROWS *Rows;

 if (Index -> FindKey(& Scope,Name,& Duplicates))

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> ViewScope(& Scope);

 return

 (

 ViewScope.View(Duplicates,((void**) & Rows))

 &&

 Rows -> NewValue(Address)

);

 }

 else

 {

 FILE_ADDRESS NewRows;

 return

 (

 (ROCKALL_NEW<ROWS>::New(& Scope,& NewRows,& Rows))

 &&

 Rows -> NewValue(Address)

 &&

 Index -> NewKey(& Scope,Name,NewRows)

);

 }

 }

static bool CreateIndex(INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 int Count;

 for (Count=0;Count < MaxDetails;Count ++)

 {

 DETAILS *Current1 = & Details[Count];

 NAME Name1 = Current1 -> Forename;

 NAME Name2 = Current1 -> Surname;

 NAME Postcode = Current1 -> Postcode;

 FILE_ADDRESS Address;

 DETAILS *Current2;

 if

 (

 (ROCKALL_NEW<DETAILS>::New(& Scope,& Address,& Current2))

 &&

 (NewKey(Address,Name1,Index))

 &&

 (NewKey(Address,Name2,Index))

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 40

 &&

 (NewKey(Address,Postcode,Index))

)

 { (*Current2) = (*Current1); }

 else

 { FAILURE("Unable to add key"); }

 }

 return (Count == MaxDetails);

 }

static void FindKey(char *Name,INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 FILE_ADDRESS Address;

 NAME Key = Name;

 if (Index -> FindKey(& Scope,Key,& Address))

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> View1(& Scope);

 ROWS *Rows;

 if (View1.View(Address,((void**) & Rows)))

 {

 FILE_ADDRESS *Set;

 FILE_SIZE Size;

 Rows -> Touch(& Scope);

 if (Rows -> View(& Scope,& Set,& Size))

 {

 int Count;

 for (Count=0;Count < Size;Count ++)

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> View2(& Scope);

 DETAILS *Target;

 if (View2.View(Set[Count],((void**) & Target)))

 {

 printf

 (

 "The details are: '%s %s' at '%s'\n",

 Target -> Forename,

 Target -> Surname,

 Target -> Postcode

);

 }

 }

 Rows -> EndView(& Scope);

 }

 }

 }

 }

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

Rockall-DB March 2016

41 A Tour of the Rockall-DB Library | Rockall Software Ltd.

 if ((Count==2) && (Scope.CreateFile(Argument[1])))

 {

 if (Scope.BeginTransaction())

 {

 INDEX Index;

 if (CreateIndex(& Index))

 { FindKey(Details[2].Forename,& Index); }

 Scope.EndTransaction();

 }

 Scope.CloseFile();

 }

 return 0;

 }

Example-04-11

We have now reached probably the most complex example of the Rockall-DB library

in this manual. The first significant change from ‘Example-04-10’ is the addition of a

the ‘NewKey’ function and the introduction of a new class called ‘ROW_SET’.

When we did not support duplicate keys every entry in the ‘Index’ produced a single

‘FILE_ADDRESS’ (i.e. ‘Address’) which pointed directly to the associated

‘DETAILS’ structure. However, now we do support duplicate keys every entry in the

‘Index’ produces a single ‘FILE_ADDRESS’ which instead points directly to a

‘ROW_SET’. A ‘ROW_SET’ is simply a collection of ‘FILE_ADDRESS’ values stored in

sorted order. The ‘ROW_SET’ class is derived from the ‘SET’ class and is defined as

‘SET’ of ‘FILE_ADDRESS’ values. All the ‘NewKey’ function does is to either add

the supplied ‘FILE_ADDRESS’ (i.e. ‘Address’) to an existing ‘ROW_SET’ (if the key

value already exists) or create a new ‘ROW_SET’ (if it does not already exist).

The next significant change is towards the end of the example is where we call

‘FindValue’ to extract the results. When we did not support duplicate keys in

‘Example-04-10’ all we needed to do was to call ‘View’ with associated

‘FILE_ADDRESS’ (i.e. ‘Address’) to get the result. However, in ‘Example-04-11’

the call to ‘View’ gives us a ‘ROW_SET’ and so we need to call the ‘View’ function in

the ‘ROW_SET’ class to give us the ‘Set’ of ‘FILE_ADDRESS’ values and its ‘Size’.

We then need to ‘View’ each ‘FILE_ADDRESS’ (i.e. ‘Address’) in the ‘Set’ to get

all the results.

It is worth highlighting a few interesting features of the ‘ROW_SET’ and ‘SET’ classes

at this point. The call to ‘Touch’ in ‘Example-04-11’ asynchronously loads all of the

data associated with the ‘FILE_ADDRESS’ values into memory from storage (if they

are not already present). While this is probably excessive in this example this feature

is particularly valuable in cases where a ‘ROW_SET’ is large and ‘ExclusiveView’,

‘Update’ or ‘View’ will be called on most of the related ‘FILE_ADDRESS’ values.

The ‘ROW_SET’ and ‘SET’ classes also support the set operations ‘Difference’,

‘Intersect’ and ‘Join’ to allow set operations to be performed in a way very

similar to taditional relational databases.

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 42

Now, let’s just say that we changed ‘Example-04-11’ to do multiple calls to

‘FindValue’ with different key values to produce multiple ‘ROW_SET’ values. If we

called ‘Intersect’ on all these ‘ROW_SET’ values then the resultant ‘ROW_SET’

would contain the ‘FILE_ADDRESS’ values where all the these keys were present. If

instead we called ‘Join’ then the resultant ‘ROW_SET’ would contain the

‘FILE_ADDRESS’ values where any the these keys were present. Finally, if instead we

called ‘Difference’ then the resultant ‘ROW_SET’ would contain the

‘FILE_ADDRESS’ values where only one of these keys were present.

Just for completeness we shall now take a quick look as the ‘QUEUE’ and ‘TREE’

classes, even though there is very little new material to cover in these areas. We shall

begin by converting ‘Example-04-02’ to use a ‘QUEUE’ in ‘Example-04-12’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "FlexibleString.hpp"

#include "Failure.hpp"

#include "Queue.hpp"

#include "RockallTypes.hpp"

typedef FLEXIBLE_STRING<DATABASE_HEAP,CHAR> MESSAGE;

void PushAndPop(void)

 {

 AUTOMATIC_HEAP_SCOPE<DATABASE_HEAP> Scope;

 static const int MaxMessages = 10;

 MESSAGE Messages[MaxMessages] =

 {

 "One", "Two", "Three", "Four", "Five",

 "Six", "Seven", "Eight", "Nine", "Ten"

 };

 if (Scope.BeginTransaction())

 {

 QUEUE<DATABASE_HEAP,NO_LOCK,MESSAGE> Queue(& Scope);

 MESSAGE Value;

 int Count;

 for

 (

 Count=0;

 (Count < MaxMessages)

 &&

 (Queue.PushValue(& Scope,Messages[Count]));

 Count ++

);

 if (Count < MaxMessages)

 { FAILURE("Unable to push all the values"); }

 for

 (

 /* void */;

 (Count > 0) && (Queue.PopValue(& Scope,& Value));

 Count --

);

 if (Count > 0)

Rockall-DB March 2016

43 A Tour of the Rockall-DB Library | Rockall Software Ltd.

 { FAILURE("Unable to pop all the values"); }

 }

 }

int main(int Count,char *Argument[])

 {

 DATABASE_HEAP Heap;

 AUTOMATIC_HEAP_SCOPE<DATABASE_HEAP> Scope(& Heap);

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

 PushAndPop();

 Scope.CloseFile();

 }

 return 0;

 }

Example-04-12

Now, although ‘Example-04-02’ and ‘Example-04-12’ appear similar in most respects

we see that in ‘Example-04-12’ we use a ‘QUEUE’ instead of a ‘STACK’ and store

values of type ‘FLEXIBLE_STRING’ instead of ‘int’. We have modified the

example in this way to highlight that with Rockall-DB it is trivial to build systems

such as transactional messaging systems (i.e. such as ‘Message Queueing’).

Now, let’s convert ‘Example-04-09’ to use a ‘TREE’ in place of a ‘HASH’ in

‘Example-04-13’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "AutomaticViewScope.hpp"

#include "Example-04-08.hpp"

#include "Failure.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

#include "Tree.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,MaxName> NAME;

typedef TREE<HEAP_TYPE,NO_LOCK,NAME,FILE_ADDRESS,16000,16000> INDEX;

static bool CreateIndex(INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 int Count;

 for (Count=0;Count < MaxDetails;Count ++)

 {

 DETAILS *Current1 = & Details[Count];

 NAME Name1 = Current1 -> Forename;

 NAME Name2 = Current1 -> Surname;

 FILE_ADDRESS Address;

 DETAILS *Current2;

 if

 (

 (ROCKALL_NEW<DETAILS>::New(& Scope,& Address,& Current2))

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 44

 &&

 (Index -> NewKey(& Scope,Name1,Address))

 &&

 (Index -> NewKey(& Scope,Name2,Address))

)

 { (*Current2) = (*Current1); }

 else

 { FAILURE("Unable to add key"); }

 }

 return (Count == MaxDetails);

 }

static void NewKey(char *Name,INDEX *Index)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope;

 FILE_ADDRESS Address;

 NAME Key = Name;

 if (Index -> NewKey(& Scope,Key,& Address))

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> ViewScope(& Scope);

 DETAILS *Target;

 if (ViewScope.View(Address,((void**) & Target)))

 {

 printf

 (

 "The details are: '%s %s' at '%s'\n",

 Target -> Forename,

 Target -> Surname,

 Target -> Postcode

);

 }

 }

 }

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 if ((Count==2) && (Scope.CreateFile(Argument[1])))

 {

 if (Scope.BeginTransaction())

 {

 INDEX Index;

 if (CreateIndex(& Index))

 { NewKey(Details[2].Forename,& Index); }

 Scope.EndTransaction();

 }

 Scope.CloseFile();

 }

 return 0;

 }

Example-04-13

Rockall-DB March 2016

45 A Tour of the Rockall-DB Library | Rockall Software Ltd.

Now, in this case there are barely any changes between ‘Example-04-10’ and

‘Example-04-13’ except for the use of:

typedef TREE<HEAP_TYPE,NO_LOCK,NAME,FILE_ADDRESS,16000,16000> INDEX;

instead of:

typedef HASH<HEAP_TYPE,NO_LOCK,NAME,FILE_ADDRESS> INDEX;

Now, let’s focus in on the two values of ‘16000’ that are optional template

parameters to the ‘TREE’ class and specify the number of ‘STEMS’ in a ‘BRANCH’

and the number of ‘LEAVES’ on a ‘TWIG’ respectively (i.e. the fan out if the

‘TREE’). These two values may vary between ‘16’ and ‘16384’ and provide the

user with significant control over the shape of the resulting ‘TREE’. The values of

‘16000’ in this case are fairly outragious and would be far better suited to a very

large index. These settings would support up to 256,000,000 nodes with just one

level of index (i.e. 16,000 x 16,000 = 256,000,000) and up to 4,096,000,000,000

nodes with just two levels of index (i.e. 16,000 x 16,000 x 16,000 =

4,096,000,000,000). Clearly, this is excessive and the minimum values of ‘16’

would seem for more reasonable in this case. If the minimum values of ‘16’ were

used the ‘TREE’ would support up to 256 nodes with one level of index (i.e. 16 x 16 =

256) and up to 4,096 nodes with two levels of index (i.e. 16 x 16 x 16 = 4,096).

The key point highlighted by ‘Example-04-13’ is the massive flexibility of the

Rockall-DB library. Typically, a developer has no control over the structure of

indexes and consequently the values selected by implementors can sometimes be

totally unsuitable for particular applications. We saw that with the two optional

parameters set to ‘16000’ that up to 256,000,000 nodes could be stored with one

level of index. However, setting the two optional parameters to ‘16’ would require

six levels of index for the same sized ‘Tree’. Clearly, traversing all of these extra

levels of indexes could potentially have very serious implications for performance.

A further difference between a ‘HASH’ and a ‘TREE’ is that in a ‘TREE’ all the keys

are stored in sorted order. Consequently, an additional function called ‘FindValues’

is available to locate either the closest key or a number of keys within a specific

range. Typically, a ‘HASH’ is a better choice when a simple direct lookup is required

in main memory whereas a ‘TREE’ tends to be better when the closest key or a range

of keys are needed or the structure is stored in a transactional database.

In closing, it is hoped that the reader can better understand the previous claims

suggesting that Rockall-DB can support many other database models, such as graph

databases, hierarchic databases, object oriented databases or relational databases.

While there is no explicit support for these database models within Rockall-DB

nonetheless, hopefully it can be seen that because a ‘FILE_ADDRESS’ can refer to any

object it is essentially akin to a memory address in languages like C++, C# or Java.

Consequently, any data structure that can be created in-memory using these languages

can also be transactionally created and stored in a Rockall-DB database.

It is common for transactional databases to effectively put artificial limitations on data

structures (i.e. there is seldom support for ‘union’). A joy of Rockall-DB is that it

March 2016 Rockall-DB

Rockall Software Ltd. | A Tour of the Rockall-DB Library 46

effectively removes such limitations. Moreover, when using Rockall-DB it is

possible to build almost any type of transactional database structure. Obviously, there

is occasionally some extra work associated with building certain types of transactional

data structures. Typically, this involves replacing any memory address with a

‘FILE_ADDRESS’ or suitable alternative. In the case of relational data structures

which support duplicate keys the ‘ROW_SET’ class may need to be used, as outlined in

‘Example-04-11’. Nonetheless, the benefit of this modest extra complexity is that

Rockall-DB allows a developer to easily build precisely what they want, how they

want it and where they want it.

We have now finished our brief tour of the Rockall-DB core and the Rockall-DB

library. We shall continue by reviewing of the Rockall-DB core and Rockall-DB

library in greater detail in the reference chapters 5 and 6 respectively.

Rockall-DB March 2016

47 The Rockall-DB Core | Rockall Software Ltd.

5. The Rockall-DB Core
In this chapter we will go through the core Rockall-DB functionality step by step to

highlight all the main features. We will start with the Rockall-DB heaps and basic

functions and then move on towards the more complicated features, such as

asynchronous I/O, mirroring, regions and transactions.

5.1. The Rockall-DB Heaps and Types
At the centre of Rockall-DB is a collection of heaps and types. The Rockall-DB types

are used internally throughout Rockall-DB and approximate to the following standard

C/C++ data types:

Rockall-DB Type Standard C/C++ Type
BOOLEAN bool

CHAR char

FILE_ADDRESS long long int

FILE_SIZE long long int

SBIT16 short

SBIT32 int

SBIT64 long long int

VOID void

WCHAR wchar_t

Table-05-01

The Rockall-DB types are used for consistency, managability and simplicity. Any use

of these types by developers is entirely optional and completely at their discretion.

The vast majority of Rockall-DB has been written in C/C++ in a ‘namespace’ called

‘ROCKALL’ in an effort to minimize any interference with other source code. All of

the above Rockall-DB types may optionally be included into other C/C++ modules by

using the following header:

#include "RockallTypes.hpp"

Alternately, individual specific types (or other functionality) can be accessed directly

by using the ‘namespace’ prefix as follows:

ROCKALL::BOOLEAN

ROCKALL::CHAR

ROCKALL::FILE_ADDRESS

ROCKALL::FILE_SIZE

ROCKALL::SBIT16

ROCKALL::SBIT32

ROCKALL::SBIT64

ROCKALL::WCHAR

If there are issues with the Rockall-DB headers this can be mitigated by setting the

following compile time flag:

#define DISABLE_ROCKALL_GLOBAL_TYPES 1

The Rockall-DB heaps are central to all of the Rockall-DB functionality and are as

follows:

Heap Name Header File Description
SINGLE_THREADED_HEAP SingleThreadedHeap.hpp A single threaded in-memory heap.

MULTI_THREADED_HEAP MultiThreadedHeap.hpp A multi-threaded in-memory heap.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 48

TRANSACTIONAL_HEAP TransactionalHeap.hpp A multi-threaded in-memory transactional heap.

DATABASE_HEAP DatabaseHeap.hpp A multi-threaded in-file transactional heap

VIRTUAL_HEAP VirtualHeap.hpp The virtual base class for all Rockall-DB heaps.

Table-05-02

An instance of a Rockall-DB heap can be created as shown in ‘Example-05-01’

below:

#include "SingleThreadedHeap.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 return 0;

 }

Example-05-01

All the Rockall-DB heaps follow the same block structure rules as any other data type

in C/C++. Consequently, when a Rockall-DB heap goes out of scope it automatically

deletes any allocations related to the heap. If any of the allocations on a heap have

been created with the flag ‘Destroy’ set to ‘True’ (see ‘New’ later) then the

associated destructors will be executed prior to the allocations being deleted. This is

the case for all of Rockall-DB heaps except for ‘DATABASE_HEAP’. A

‘DATABASE_HEAP’ does not delete any allocations or support the ‘Destroy’ flag but

instead aborts any outstanding transactions and closes the related file. Consequently,

all of the allocations and data stored in the file should still be present the next time the

file is opened by the ‘OpenFile’ function.

Great care must be taken if a Rockall-DB heap is created outside of a functional code

block as shown in ‘Example-05-02’ below:

#include "SingleThreadedHeap.hpp"

static SINGLE_THREADED_HEAP Heap;

int main(void)

 { return 0; }

Example-05-02

It is vital that the constructor for a Rockall-DB heap is called before its first use and

its destructor after its last use. Although this may seem obvious, this requirement can

pose problems in some situations. In particular, it should also be noted that some

versions of Microsoft Windows automatically abort all threads when a call is made to

‘exit()’ or when executing ‘return’ from ‘main()’. This can cause Rockall-DB

to hang as active threads are sometimes aborted while holding critical resources. A

solution to this specific issue is to put all of the code into a Dynamic Link Library

‘dll’ and to load and unload it as shown in ‘Example-05-03’ below:

#include "windows.h"

typedef int (*MAIN_IN_DLL)(int Count,char *Argument[]);

int main(int Count,char *Argument[])

 {

Rockall-DB March 2016

49 The Rockall-DB Core | Rockall Software Ltd.

 HINSTANCE Handle = LoadLibrary(((LPCWSTR) L"User.dll"));

 if (Handle != NULL)

 {

 MAIN_IN_DLL MainInDll =

 ((MAIN_IN_DLL) GetProcAddress(Handle,"main"));

 if (MainInDll != NULL)

 {

 int Status = MainInDll(Count,Argument);

 if (FreeLibrary(Handle))

 { return Status; }

 }

 }

 return 1;

 }

Example-05-03

Clearly, any attempt to use a Rockall-DB heap before the execution of its constructor

is complete or after the start of the execution of its destructor is not defined (i.e. grave

disorder may result).

A technical specification for the constructor of each of the Rockall-DB heaps is as

follows:

SINGLE_THREADED_HEAP(VOID)

MULTI_THREADED_HEAP(VOID)

TRANSACTIONAL_HEAP(VOID)

and

DATABASE_HEAP

 (

 SBIT32 NewMaxTime = DefaultTime,

 SBIT32 NewMinSpace = DefaultMinSpace,

 SBIT32 NewMaxSpace = DefaultMaxSpace

)

A ‘SINGLE_THREADED_HEAP’ is not a thread safe heap and so can only be used by one

thread at any instant in time. Its simplicity and limited functionality make it the

fastest of the Rockall-DB heaps. A good general programming model is to have one

(or more) ‘SINGLE_THREADED_HEAP’ per thread, to hold private data that is closely

associated with the thread. There are a variety of justifications for this suggestion

such as:

1. No locks, so faster private memory allocations for the thread.

2. A threads’ private memory allocations will be densely packed reducing cache-

line activity, false sharing and paging.

3. A thread can call ‘DeleteAll’ (see later) to delete all the allocations at

suitable points during its execution to reduce the risk of memory leaks.

4. If a thread fails all of its local memory can be safely and easily cleaned up.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 50

A ‘MULTI_THREADED_HEAP’ is a thread safe heap and so can be used by multiple

threads at the same time. While it is typical to have a single

‘MULTI_THREADED_HEAP’ per process for globally shared data, this is arbitary and

other programming models can easily be used. It was suggested above that a

‘SINGLE_THREADED_HEAP’ per thread was a good general model. If a threads private

data is occasionally deleted by other threads then a ‘MULTI_THREADED_HEAP’ per

thread could be used instead of a ‘SINGLE_THREADED_HEAP’ per thread (i.e. because

a ‘SINGLE_THREADED_HEAP’ could not safely be used in this situation). Although

this change would not offer all of the benefits outlined above it would still preserve

most of these benefits and would certainly be much more efficient than having a

single global heap for all the allocations and shared by all the threads.

A ‘TRANSACTIONAL_HEAP’ is an extension of a ‘MULTI_THREADED_HEAP’ that

supports the Rockall-DB transactional functionality in main memory (i.e. not in files).

Although the programming model for a ‘TRANSACTIONAL_HEAP’ is a little more

complex, it does support rolling back memory allocations when transactions fail.

Obviously, there is a significant cost associated with this functionality due to the

associated lock manager and change tracking. Nonetheless, if this overhead is

acceptable then a ‘TRANSACTIONAL_HEAP’ can greatly significantly simplify a wide

variety of software applications and systems.

Finally, a ‘DATABASE_HEAP’ is an extension of a ‘TRANSACTIONAL_HEAP’ that

supports the Rockall-DB transactional functionality within files. It is the only

Rockall-DB heap that does not clean up its allocations at the end of its scope, but

rather aborts any outstanding transactions and closes any related file. If a program

containing a ‘DATABASE_HEAP’ crashes an attempt will be made to automatically

recover the file the next time the associated file is opened. This recovery process

consists of aborting any incomplete transactions and reversing out the associated

changes. In short, a ‘DATABASE_HEAP’ is eseentialy follows the same recovery steps

as a traditional transactional database.

The technical specification of a ‘DATABASE_HEAP’ is more complex than the other

Rockall-DB heaps and is as follows:

DATABASE_HEAP

 (

 SBIT32 NewMaxTime = DefaultTime,

 SBIT32 NewMinSpace = DefaultMinSpace,

 SBIT32 NewMaxSpace = DefaultMaxSpace

)

The ‘NewMaxTime’ parameter specifies the maximum time (in seconds) an unused

block from a file will be cached in main memory. The current ‘DefaultTime’ is 5

minutes (i.e. 300 seconds). After this time, it will be removed from main memory

and any associated memory released. If block is used again at some later point it will

need to be reloaded in to main memory again from stoarge. The ‘NewMinSpace’

parameter sets a lower bound on the percentage of main memory the current process

can use for its Rockall-DB cache. The current ‘DefaultMinSpace’ is 5 (i.e. 5%).

The ‘NewMaxSpace’ parameter sets an upper bound on the percentage of main

memory the current process can use for its Rockall-DB cache. The current

‘DefaultMaxSpace’ is 80 (i.e. 80%).

Rockall-DB March 2016

51 The Rockall-DB Core | Rockall Software Ltd.

The memory consumption of Rockall-DB can briefly exceed these limitations if there

is a short-term need for memory. Regardless, it is strongly recommended that no

single memory allocation on a ‘DATABASE_HEAP’ exceed 25% of the size of main

memory (i.e. see ‘New’ later). Moreover, wild swings in the amount of memory

allocated (i.e. say 25% of main memory) can sometimes provoke severe short-term

memory pressure resulting in hard page faults and poor performance. Typically, such

situations are uncommon but may occur in data hungry applications (i.e. such as an

application that transactionally stores multiple full HD movies).

A Rockall-DB heap is a standard C/C++ class and so follows the associated usual

rules. All the related member functions can be called in the normal way as outlined in

‘Example-05-04’ below:

#include "SingleThreadedHeap.hpp"

#include "Failure.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 int *Data;

 if (! Heap.New(((void**) & Data),sizeof(int)))

 { FAILURE("Unable to allocate an int"); }

 return 0;

 }

Example-05-04

Now, let’s move on and examine the core Rockall-DB functions in more detail in the

following sections.

5.2. The Rockall-DB Core Functions
All of the Rockall-DB core functions work on any of the Rockall-DB heaps. The

precise features and requirements of these functions sometimes vary depending on the

type of heap. As an example, the ‘New’ and ‘Delete’ functions do not need to be

within a transaction scope when used on a ‘SINGLE_THREADED_HEAP’ or

‘MULTI_THREADED_HEAP’ but do need to be within a transaction scope when used on

a ‘TRANSACTIONAL_HEAP’ or ‘DATABASE_HEAP’. A table of the Rockall-DB core

functions covered in this section is as follows:

Function Name Description
Delete Delete an allocation previously created by ‘New’ or ‘Resize’ (optionally with its destructor).

DeleteAll Delete all the allocations on a heap (optionally executing all the related destructors).

Details Get the details of an allocation previously created by ‘New’ or ‘Resize’.

Feature Test the features supported by a heap.

GetError Get any error code relating to the last Rockall-DB call on a heap.

New Create a new allocation on a heap.

Resize Adjust the size of an allocation previously created by ‘New’ or ‘Resize’.

SetError Set the error code to a user supplied value.

Size Compute the total size of all the allocations on a heap.

Walk Walk a heap executing a user supplied callback for every allocation on a heap.

Table-05-03

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 52

All of the functions listed in ‘Table-05-03’ are described in detail in the following

sections in the order they appear the table above.

5.2.1. The Delete Function
The ‘Delete’ function frees space previously allocated by a call to the ‘New’ or

‘Resize’ functions. The ‘Delete’ function requires an active transaction when used

on a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ but not otherwise (see

‘BeginTransaction’ for more information about transactions).

A technical specification of the variants of the ‘Delete’ function are as follows:

VIRTUAL BOOLEAN Delete

 (

 FILE_ADDRESS Address,

 BOOLEAN NoDestroy = False,

 BOOLEAN Zero = False

)

VIRTUAL BOOLEAN Delete

 (

 VOID *Data,

 BOOLEAN NoDestroy = False,

 BOOLEAN Zero = False

)

When ‘Delete’ is used in conjunction with a ‘MULTI_THREADED_HEAP’ or a

‘SINGLE_THREADED_HEAP’ the allocation is deleted before the call returns. When

‘Delete’ is used with a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ the allocation is

deleted when the related transaction completes. If the transaction aborts, the

allocation will be left unchanged and it will not be deleted. An optimization can

occur in the situation where an allocation is created and deleted within the same

transaction, in this case a ‘Delete’ typically occurs before the call returns.

The ‘New’ and ‘Resize’ functions provide up to two addresses when creating an a

new or modified allocation. The first is a ‘FILE_ADDRESS’ (called ‘Address’)

which relates to the offset of the allocation in the file (in bytes). The second is a

‘VOID*’ (called ‘Data’) which is a pointer to the allocation in main memory.

Either of these addresses may be used in conjunction with corresponding version of

‘Delete’ to destroy it. These two addresses contain the same value and so are

interchangable giving the same level of performance for all of the Rockall-DB heaps

except ‘DATABASE_HEAP’. A ‘DATABASE_HEAP’ strongly prefers a ‘FILE_ADDRESS’

(i.e. ‘Address’) in all situations and will need to compute the ‘FILE_ADDRESS’ if it

is not supplied in the call.

The ‘NoDestroy’ parameter is the complement of the ‘Destroy’ parameter in the

‘New’ function. When an allocation is created with ‘Destroy’ set to ‘True’ (see

‘New’ for more details) its destructor will be automatically called when it is deleted

unless ‘NoDestroy’ is set to ‘True’ in the associated ‘Delete’ call.

The ‘Zero’ parameter will overwrite the space used by an allocation after it has been

deleted with zeros. This will occur automatically when using a ‘DATABASE_HEAP’ or

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

Rockall-DB March 2016

53 The Rockall-DB Core | Rockall Software Ltd.

when using the debugging build of Rockall-DB. This is a security feature and offers

no other benefits.

The ‘Delete’ function will return ‘True’ if it was able to find and delete the

allocation and ‘False’ otherwise. A call to ‘Delete’ on any unallocated space in a

Rockall-DB heap will not damage the heap or the related area of memory. A call to

‘Delete’ on an area of memory unrelated to Rockall-DB should almost never

damage it, but it is remotely possible that it will in some rare situations.

When ‘Delete’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.2.2. The DeleteAll Function
The ‘DeleteAll’ function deletes all of the allocated memory on a Rockall-DB heap.

When ‘DeleteAll’ is called there must not be any active transactions on the heap.

A technical specification of the ‘DeleteAll’ function is as follows:

VIRTUAL BOOLEAN DeleteAll

 (

 BOOLEAN NoDestroy = False,

 BOOLEAN Zero = False

)

The ‘NoDestroy’ parameter prevents any destructors from being called for any of

the allocations deleted by ‘DeleteAll’ (see ‘Delete’ above for more details).

The ‘Zero’ parameter will overwrite the entire heap after all of the allocations have

been deleted with zeros. This will occur automatically when using a

‘DATABASE_HEAP’ or when using the debugging build of Rockall-DB. This is a

security feature and offers no other benefits.

A call to ‘DeleteAll’ on a ‘DATABASE_HEAP’ is not transactional but it is atomic.

Consequently, everything or nothing on the heap will be deleted. Regardless, in this

specific situation it is often both easier and faster to simply close the file and delete it.

The ‘DeleteAll’ function will return ‘True’ if it was able to delete the heap or

‘False’ otherwise.

When ‘DeleteAll’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.2.3. The Details Function
The ‘Details’ function provides information about an allocation previously returned

by the ‘New’ or ‘Resize’ functions. The ‘Details’ function does not require a

transaction regardless of the type of Rockall-DB heap.

A technical specification of the variants of the ‘Details’ function are as follows:

Rockall-DB Heap Comments

DATABASE_HEAP No Transactions

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP No Transactions

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transactions

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP No Transactions

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 54

VIRTUAL BOOLEAN Details

 (

 FILE_ADDRESS Address,

 BOOLEAN *Destroy = NULL,

 FILE_SIZE *Space = NULL

)

VIRTUAL BOOLEAN Details

 (

 VOID *Data,

 BOOLEAN *Destroy = NULL,

 FILE_SIZE *Space = NULL

)

The ‘New’ and ‘Resize’ functions provide up to two addresses when creating a

new or modified allocation. The first is a ‘FILE_ADDRESS’ (called ‘Address’)

which relates to the offset of the allocation in the file (in bytes). The second is a

‘VOID*’ (called ‘Data’) which is a pointer to the space in main memory. Either of

these addresses may be used in conjunction with corresponding version of ‘Details’

to examine an allocation. These two addresses contain the same value and so are

interchangable giving the same level of performance for all of the Rockall-DB heaps

except ‘DATABASE_HEAP’. A ‘DATABASE_HEAP’ strongly prefers a ‘FILE_ADDRESS’

(i.e. ‘Address’) in all situations and will need to compute the ‘FILE_ADDRESS’ if it

is not supplied in the call.

The ‘Destroy’ parameter returns a ‘BOOLEAN’ value indicating the setting of the

‘Destroy’ parameter on the call to ‘New’ when the space was originally allocated.

If the value of the ‘Destroy’ parameter is ‘NULL’ (i.e. the default) this parameter it

will do nothing.

The ‘Space’ parameter returns the number of bytes occupied by an allocation. The

‘Size’ requested in a call to ‘New’ or ‘Resize’ functions is viewed as a minimum

in Rockall-DB and all of the Rockall-DB heaps routinely supply additional space for

alignment, fragmentation and performance reasons (see ‘New’ for more details). If

the value of the ‘Space’ parameter is ‘NULL’ (i.e. the default) this parameter it will

do nothing.

The ‘Details’ function will return ‘True’ if it was able to find the allocation or

‘False’ otherwise. A call to ‘Details’ on an area of memory unrelated to Rockall-

DB should almost never return ‘True’, but it is remotely possible in some rare

situations.

When ‘Details’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.2.4. The Feature Function
The ‘Feature’ function provides information about features supported by a specific

Rockall-DB heap. The ‘Feature’ function does not require a transaction regardless

of the type of Rockall-DB heap.

A technical specification of the ‘Feature’ function is as follows:

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

Rockall-DB March 2016

55 The Rockall-DB Core | Rockall Software Ltd.

BOOLEAN Feature

 (

 SBIT32 Features

)

The ‘Features’ parameter should contain one or more of the feature flags joined

together (i.e. using the arithmetic ‘or’ operator ‘|’ to join the flags). The feature flags

are specified in the header ‘#include "RockallTypes.hpp"’. The currently

supported feature flags are as follows:

Feature Flag Set for the following Rockall-DB Heaps

RockallDatabaseHeap DATABASE_HEAP

RockallMultiThreadedHeap MULTI_THREADED_HEAP

RockallSingleThreadedHeap SINGLE_THREADED_HEAP

RockallTransactionalHeap TRANSACTIONAL_HEAP

RockallFileSupport DATABASE_HEAP

RockallLockSupport DATABASE_HEAP,

MULTI_THREADED_HEAP,

TRANSACTIONAL_HEAP

RockallMemorySupport DATABASE_HEAP,

MULTI_THREADED_HEAP,

SINGLE_THREADED_HEAP,

TRANSACTIONAL_HEAP

RockallTransactionalSupport DATABASE_HEAP,

TRANSACTIONAL_HEAP

The ‘Feature’ function has been coded to return a static ‘BOOLEAN’ value in most

cases. This is to help optimize the code generated by the C++ compiler as outlined in

‘Example-05-05’ below:

#include "SingleThreadedHeap.hpp"

#include "Failure.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 int *Data;

 if (Heap.Feature(RockallTransactionalSupport))

 {

 if

 (

 (! Heap.BeginTransaction())

 ||

 (! Heap.New(((void**) & Data),sizeof(int)))

 ||

 (! Heap.EndTransaction())

)

 { FAILURE("Unable to allocate an int"); }

 }

 else

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 56

 {

 if (! Heap.New(((void**) & Data),sizeof(int)))

 { FAILURE("Unable to allocate an int"); }

 }

 return 0;

 }

Example-05-05

The call to ’Heap.Feature(RockallTransactionalSupport)’ in this case will

produce the constant value ‘False’ at compile time, as a

‘SINGLE_THREADED_HEAP’ does not support transactions. Consequently, the C++

compiler can now optimize away the ‘if’ statement as the condition is known to

always be ‘False’. So, it will be ‘as-if’ the code had been written as shown in

‘Example-05-06’ below:

#include "SingleThreadedHeap.hpp"

#include "Failure.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 int *Data;

 if (! Heap.New(((void**) & Data),sizeof(int)))

 { FAILURE("Unable to allocate an int"); }

 return 0;

 }

Example-05-06

A large part of the Rockall-DB library has been written to make use of this feature to

automatically optimize away pieces of code that do not apply to particular Rockall-

DB heaps. Specifically, this has been done in connection with locks, transactions and

unsupported functions (see the ‘AUTOMATIC_HEAP_SCOPE’ and ‘NO_LOCK’ classes in

‘AUTOMATIC_HEAP_SCOPE.hpp’ and ‘NO_LOCK.hpp’ respectively).

5.2.5. The GetError Function
The ‘GetError’ function provides an error code when a call to a Rockall-DB

function returns ‘False’. The ‘GetError’ function does not require a transaction

regardless of the type of Rockall-DB heap.

A technical specification of the ‘GetError’ function is as follows:

VIRTUAL BOOLEAN GetError

 (

 SBIT32 *ErrorNumber

)

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

Rockall-DB March 2016

57 The Rockall-DB Core | Rockall Software Ltd.

The ‘ErrorNumber’ parameter will contain any available error code if a call to

‘GetError’ returns ‘True’. The error codes are specified in the header ‘#include

"Error.hpp"’. A sample of the currently specified error codes are as follows:

Error Name Value Description

NoError 0 There is no error code.
ErrorNoActiveHeap 1000 There is no active heap available

for use.
ErrorUnsupported 1001 The call is not supported in this

context.
ErrorNoAvailableMemory 1002 There is not enough available free

memory space.
ErrorIncorrectParameter 1003 A parameter to the call is invalid.
ErrorSettingSystemValue 2000 An internal error occurred.
ErrorLockingRootPage 2001 An internal error occurred.
ErrorNoSpaceForRootPage 2002 An internal error occurred.
ErrorCreatingFile 2003 There was an error while trying to

create a new file. Typically, the

file already exists.
ErrorFileAlreadyActive 2004 An internal error occurred.
ErrorOpeningFile 2005 There was an error while trying to

open an existing file. Typically,

the file does not exist, is protected

or locked by another user.
ErrorReadingSystemValue 2006 An internal error occurred.
ErrorNoCreateOrOpenFile 2007 There has been no successful call

to ‘CreateFile()’ or ‘OpenFile()’

prior the current call.
ErrorActiveTransaction 2008 There is a existing active

transaction.
ErrorNoActiveTransaction 2009 There is no active transaction

available for use.
ErrorNoActiveLock 2010 There is no active lock to use.
ErrorDeadlock 3000 The request appeared to lead to a

deadlock. Release the necessary

resources and try again.

5.2.6. The New Function
The ‘New’ function allocates space on a Rockall-DB heap. The ‘New’ function

requires an active transaction when used with a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’ but not otherwise (see ‘BeginTransaction’ for more

information about transactions).

A technical specification of the variants of the ‘New’ function are as follows:

VIRTUAL BOOLEAN New

 (

 FILE_ADDRESS *Address,

 VOID **Data,

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 58

 FILE_SIZE Size,

 FILE_SIZE *Space = NULL,

 BOOLEAN Destroy = False,

 BOOLEAN Zero = False

)

VIRTUAL BOOLEAN New

 (

 VOID **Data,

 FILE_SIZE Size,

 FILE_SIZE *Space = NULL,

 BOOLEAN Destroy = False,

 BOOLEAN Zero = False

)

The ‘New’ function allocates space in main memory for all Rockall-DB heaps except

a ‘DATABASE_HEAP’ where it will allocate space in the associated file and in main

memory at the same time. The only mandatory parameters for ‘New’ are ‘Data’

and ‘Size’. All the other parameters may be omitted if desired.

The ‘Address’ parameter will contain the offset of the allocation in the file (in bytes)

for a ‘DATABASE_HEAP’ but for all other heaps the value will match the value of the

‘Data’ parameter when a call to ‘New’ returns ‘True’. The ‘Delete’,

‘Details’ and ‘Resize’ functions will accept either the ‘Address’ or ‘Data’

parameter for all operations. However, a ‘DATABASE_HEAP’ strongly prefers a

‘FILE_ADDRESS’ (i.e. ‘Address’) in all situations and will need to compute a

‘FILE_ADDRESS’ if it is not supplied in the call.

The ‘Data’ parameter will contain a pointer to the allocation in main memory when a

call to ‘New’ returns ‘True’. If the allocation ‘Size’ is a power of two (and less

than or equal to 4K) then the memory allocated will always fall on the natural power

of two alignment boundary. Moreover, Rockall-DB expends quite a bit of effort to

align allocations, compact free space and minimize fragmentation. This effort

typically pays off in long running applications where the impact of poor alignment,

low data density and fragmentation are most keenly felt.

All allocations in Rockall-DB are stored end-to-end with no heap data between them

except at the beginning and end of pages. This structure enhances the density of the

memory allocations and so aids performance. However, it also means that any

memory overrun will likely to damage user data rather than heap data. A collection of

special ‘debug’ builds are available in Rockall-DB to help find such problems.

Additionally, the ‘Walk’ function (see later) can be used to traverse all the nearby

allocations.

The ‘Size’ parameter should contain the number of bytes required for a new

allocation. However, in Rockall-DB this is viewed as a minimum and often some

extra bytes will be allocated for alignment, fragmentation and performance reasons.

These extra bytes are available for general use and the actual size of the allocation can

be found via the ‘Space’ parameter. It is strongly advised that the ‘Size’ parameter

should never be greater than 25% of the available DRAM when using a

‘DATABASE_HEAP’. Otherwise, a grave short term need for memory may be

experienced leading to multiple hard page faults.

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

Rockall-DB March 2016

59 The Rockall-DB Core | Rockall Software Ltd.

The ‘Space’ parameter will contain the actual number of bytes allocated when a call

to ‘New’ returns ‘True’. All of these bytes are available for use in the usual way. If

the value of the ‘Space’ parameter is ‘NULL’ (i.e. the default) this parameter it will

do nothing.

The ‘Destroy’ parameter can be set to ‘True’ or ‘False’ (i.e. the default). If set

to ‘True’ then the class being allocated must be inherited for the

‘VIRTUAL_DESTRUCTOR’ class (see ‘VirtualDestructor.hpp’) to ensure there is a

v-table related to the object and that the first entry points to the objects destructor. A

fuller discussion of this topic is presented in chapter 3 starting with ‘Example-03-04’

and ending with ‘Example-03-13’. When the ‘Destroy’ parameter is set to ‘True’

Rockall-DB will automatically call an objects destructor when it is deleted by any call

to ‘Delete’ or ‘DeleteAll’ for all the Rockall-DB heaps except for a

‘DATABASE_HEAP’. If a call to ‘Resize’ is made in connection with the allocation

the property will continue persist and can only be disabled by setting ‘NoDestroy’ to

‘True’ on the associated call to ‘Delete’ or ‘DeleteAll’. A ‘DATABASE_HEAP’

will return ‘False’ on any call to ‘New’ with the ‘Destroy’ parameter is set to

‘True’. This is necessary as ‘Destroy’ requires a v-table and such structures cannot

be reliably stored and used in a transactional database.

The ‘Zero’ parameter can be set to ‘True’ or ‘False’ (i.e. the default). If set to

‘True’ the contents of any new allocation will be zeroed. If set to ‘False’ the

contents of the any new allocation are undefined.

It should be noted that memory addresses, function pointers, operating system handles

and similar structures should not be stored in a ‘DATABASE_HEAP’. There is nothing

in Rockall-DB to prevent this and it will not affect Rockall-DB in any way. However,

the contents of a ‘DATABASE_HEAP’ typically last well beyond the execution of a

single program and so these values are almost guaranteed to be invalid if used at some

later date.

When ‘New’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.2.7. The Resize Function
The ‘Resize’ function resizes an allocation on a Rockall-DB heap. The ‘Resize’

function requires an active transaction when used with a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’ but not otherwise (see ‘BeginTransaction’ for more

information about transactions).

A technical specification of the variants of the ‘Resize’ function are as follows:

VIRTUAL BOOLEAN Resize

 (

 FILE_ADDRESS *Address,

 VOID **Data,

 FILE_SIZE NewSize,

 FILE_SIZE *Space = NULL,

 BOOLEAN Zero = False

)

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Needs a Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 60

VIRTUAL BOOLEAN Resize

 (

 VOID **Data,

 FILE_SIZE NewSize,

 FILE_SIZE *Space = NULL,

 BOOLEAN Zero = False

)

The ‘Resize’ function resizes an allocation in main memory for all Rockall-DB

heaps except a ‘DATABASE_HEAP’, where it resizes the allocation in the associated

file and in main memory. The only mandatory parameters for ‘Resize’ are ‘Data’

and ‘NewSize’. All the other parameters may be omitted if desired.

A call to ‘Resize’ is functionally the same as calling ‘New’ to create a new

allocation, copying the contents of the existing allocation into the new space and

finally deleting the existing allocation. A call to ‘Resize’ will always move an

allocation unless the ‘Space’ that needs to be allocated is unchanged.

The ‘Resize’ function does not call any constructors or destructors but rather uses a

simple copy to move data between allocations. When ‘Resize’ is used with a

‘MULTI_THREADED_HEAP’ or a ‘SINGLE_THREADED_HEAP’ the existing allocation is

deleted before the call returns. When ‘Resize’ is used with a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’ the existing allocation is only deleted when the transaction

completes. If the transaction aborts, the existing allocation will be left unchanged and

instead the new allocation will be deleted. An optimization may occur in the situation

where an allocation is created and resized within the same transaction, in this case the

deletion typically occurs before before the call returns.

The ‘Address’, ‘Data’ and ‘Space’ parameters operate in the same way as

described above in the ‘New’ function above and so are outlined again here.

The ‘NewSize’ parameter operates in the same way as ‘Size’ parameter described

above in the ‘New’ function above and so is not outlined again here.

The ‘Zero’ parameter can be set to ‘True’ or ‘False’ (i.e. the default). If set to

‘True’ the contents of any extra space in the allocation will be zeroed. If set to

‘False’ the contents of any extra space in the allocation will be undefined.

When ‘Resize’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.2.5. The SetError Function
The ‘SetError’ function allows the Rockall-DB error code to be set to any user

supplied value and always returns ‘False’. The ‘SetError’ function does not

require a transaction regardless of the type of Rockall-DB heap.

A technical specification of the ‘SetError’ function is as follows:

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

Rockall-DB March 2016

61 The Rockall-DB Core | Rockall Software Ltd.

VIRTUAL BOOLEAN SetError

 (

 SBIT32 ErrorNumber

)

The ‘ErrorNumber’ parameter may contain and value and this value will typically

be returned by any later call to ‘GetError’ that returns ‘True’.

5.2.8. The Size Function
The ‘Size’ function computes the size of all the allocations on a Rockall-DB Heap.

The ‘Size’ function does not require a transaction regardless of the type of Rockall-

DB heap.

A technical specification of the ‘Size’ function is as follows:

VIRTUAL BOOLEAN Size

 (

 FILE_SIZE *Space

)

The ‘Size’ function computes the size of a Rockall-DB heap using the ‘Walk’

function outlined below. The calculation of the ‘Size’ of a heap involves visiting

every page and so consumes a significant number of CPU cycles.

The ‘Space’ parameter will contain the size of the heap (in bytes) if a call to ‘Size’

returns ‘True’.

When ‘Size’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.2.9. The Walk Function
The ‘Walk’ function calls a user supplied function for of all the allocations in a

Rockall-DB heap. When ‘Walk’ is called there must not be any active transactions on

the heap.

A technical specification of the ‘Walk’ function is as follows:

VIRTUAL BOOLEAN Walk

 (

 HEAP_WALK_FUNCTION WalkFunction,

 VOID *UserValue = NULL

)

typedef BOOLEAN (*HEAP_WALK_FUNCTION)

 (

 BOOLEAN Active,

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP Supported

Rockall-DB Heap Comments

DATABASE_HEAP No Transactions

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP No Transactions

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transactions

MULTI_THREADED_HEAP Supported

SINGLE_THREADED_HEAP Supported

TRANSACTIONAL_HEAP No Transactions

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 62

 FILE_ADDRESS Address,

 VOID *Data,

 BOOLEAN Destroy,

 FILE_SIZE Space,

 VOID *UserValue

)

The ‘Walk’ function calls the ’WalkFunction’ for every allocation in a Rockall-DB

heap. The parameters passed to each invocation of the ’WalkFunction’ are outlined

below:

The ‘Active’ parameter is set to ‘True’ if the memory allocation is in use and

‘False’ if it free.

The ‘Address’ parameter is the offset of the current allocation in the file (in bytes)

for a ‘DATABASE_HEAP’ or the same value as ‘Data’ for all other types of Rockall-

DB heap.

The ‘Data’ parameter is a pointer to the allocation in memory and is suitable for

reading its contents.

The ‘Destroy’ parameter is ‘True’ if ‘Destroy’ was set to ‘True’ on the call to

‘New’ when the allocation was created, otherwise it will be ‘False’.

The ‘Space’ parameter is contains the number of bytes in the allocation. This may

be larger than the ‘Size’ requested in the call to ‘New’ or ‘Resize’.

The ‘UserValue’ parameter contains the ‘UserValue’ initially passed on the call to

’Walk’. This enables a user supplied value (or a pointer to a defined user structure)

to be passed to all invocations of the ’WalkFunction’.

If the ’WalkFunction’ returns ‘False’ then the call to ‘Walk’ will terminate

immediately and will return ‘False’.

As mentioned above the ‘Size’ function is implemented using the ‘Walk’ function
and an outline of its implementation is shown in ‘Example-05-07’ below:

#include "SingleThreadedHeap.hpp"

#include "Failure.hpp"

#include "RockallTypes.hpp"

BOOLEAN WalkFunction

 (

 BOOLEAN Active,

 FILE_ADDRESS Address,

 VOID *Data,

 BOOLEAN Destroy,

 FILE_SIZE Space,

 VOID *UserValue

)

 {

 if (Active)

 {

 FILE_SIZE *Size = ((FILE_SIZE*) UserValue);

Rockall-DB March 2016

63 The Rockall-DB Core | Rockall Software Ltd.

 (*Size) += Space;

 }

 return True;

 }

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 FILE_SIZE Size = 0;

 if (! Heap.Walk(WalkFunction,& Size))

 { FAILURE("Unable to walk heap"); }

 return 0;

 }

Example-05-07

When ‘Walk’ returns ‘False’ more information is often available by calling the

‘GetError’ function to return the error code.

5.3. The Rockall-DB Transactional Functions
The Rockall-DB transactional functions are available on the Rockall-DB transactional

heaps which are ‘DATABASE_HEAP’ and ‘TRANSACTIONAL_HEAP’ (see section 5.1 for a

summary of the Rockall-DB heaps). A table of all the Rockall-DB functions covered

in this section is as follows:

Function Name Description
CreateFile Create and activate a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

CreateRegion Create a new separate region within a heap.

BeginTransaction Create a new transaction scope for the current thread on a heap.

ChangeRegion Change the current active region in a heap.

ExclusiveView Exclusively view an allocation previously created by ‘New’ or ‘Resize’.

EndExclusiveView Release all the resources previously claimed by a call to ‘ExclusiveView’.

JoinTransaction Join the current thread to an existing transaction (i.e. parallel processing).

LeaveTransaction Leave an existing transaction (i.e. the converse of ‘JoinTransaction’).

Update Exclusively update an allocation previously created by ‘New’ or ‘Resize’.

View Non-exclusively view an allocation previously created by ‘New’ or ‘Resize’.

EndView Release all the resources previously claimed by a call to ‘View’.

EndTransaction End a transaction, commit any updates and release any related resources.

DeleteRegion Delete a separate region within a heap along with all of its related allocations.

CloseFile Close and deactivate a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

Table-05-04

All of the functions listed in ‘Table-05-04’ are described in detail in the following

sections in the order they appear the table above.

5.3.1. The CreateFile Function
The ‘CreateFile’ function prepares a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’ for use. When ‘CreateFile’ is called there must not be

any active transactions on the heap.

A technical specification of the variants of the ‘CreateFile’ function are as

follows:

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 64

VIRTUAL BOOLEAN CreateFile

 (

 CHAR *FileName,

 ENCRYPTION_FUNCTION Function = NULL,

 VOID *UserValue = NULL

)

VIRTUAL BOOLEAN CreateFile

 (

 WCHAR *FileName,

 ENCRYPTION_FUNCTION Function = NULL,

 VOID *UserValue = NULL

)

typedef VOID (*ENCRYPTION_FUNCTION)

 (

 FILE_ADDRESS Address,

 VOID *Data,

 BOOLEAN Decrypt,

 BOOLEAN Encrypt,

 FILE_SIZE Size,

 VOID *UserValue

)

The ‘CreateFile’ function comes in both ‘ACSII’ and ‘Unicode’ styles. All of the

parameters are optional for a ‘TRANSACTIONAL_HEAP’ and have no functional value

(i.e. they do nothing). Alternately, all the parameters have a meaning in regards to a

‘DATABASE_HEAP’ and the ‘FileName’ parameter is mandatory.

The ‘FileName’ parameter is the name of the new file to be created by Rockall-DB.

The new file will automatically be formatted as a Rockall-DB database and must not

already exist.

The optional ‘Function’ parameter allows a user supplied ‘ENCRYPTION_FUNCTION’

to be supplied which will be called by Rockall-DB every time a data block is read or

written to the file. When a block is read the ‘ENCRYPTION_FUNCTION’ will be called

just after the read completes and it is required to immediately decrypt it. When a

block is written the ‘ENCRYPTION_FUNCTION’ will be called just before the write starts

and the it is required to immediately encrypt it. The meaning of the parameters

supplied to the ‘ENCRYPTION_FUNCTION’ is as follows:

The ‘Address’ parameter is the offset in the file (in bytes) of the start of block.

The ‘Data’ parameter is the memory address of the data to be encrypted or

decrypted.

The ‘Decrypt’ parameter will be ‘True’ if the ‘Data’ needs to be decrypted just

after it has been read otherwise it will be ‘False’.

The ‘Encrypt’ parameter will be ‘True’ if the ‘Data’ needs to be encrypted just

before it is written otherwise it will be ‘False’.

The ‘Size’ parameter contains the number of bytes in the area to be encrypted or

decrypted.

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP No Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP No Transaction

Rockall-DB March 2016

65 The Rockall-DB Core | Rockall Software Ltd.

The ‘UserValue’ parameter contains the ‘UserValue’ parameter initially passed to

’CreateFile’. This enables a user supplied value (or a pointer to a defined user

structure) to be passed to all invocations of the ‘ENCRYPTION_FUNCTION’.

Technically, the ‘ENCRYPTION_FUNCTION’ does not actually need to decrypt and

encrypt the data. Instead, it could use the opportunity to do some other form of

processing on the data. Regardless, damaging the data in any way can lead to grave

disorder in Rockall-DB and will most likely corrupt the database.

When ‘CreateFile’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.2. The CreateRegion Function
The ‘CreateRegion’ function is intended for advanced users and in effect creates

multiple sub-heaps within a single ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

These sub-heaps can then be used to keep closely related data together which

typically improves data density and performance. When ‘CreateRegion’ is called

there must not be any active transactions on the heap.

A technical specification for ‘CreateRegion’ is as follows:

VIRTUAL BOOLEAN CreateRegion

 (

 SBIT32 *NewRegionID

)

We will begin by considering a large multi-terabyte database with two large tables

and two large indexes. We could use the ‘CreateRegion’ function to create four

separate regions (i.e. one for each table and one for each index). Now, by putting

each table and each index in its own private region all the related data will be

naturally seperated into four zones within the file. Over time this will significantly

enhance the data density and reduce fragmentation, as each region will keep the

related data together (i.e. like the chapters in a book). If we did not use the

‘CreateRegion’ function then all the data would be randomly mixed together

throughout the file. Over time this significantly reduces the data density and increases

fragmentation leading to lower performance.

Typically, regions are not required for smaller databases (i.e. under 100 GB).

However, as the size of a database grows the number of file transfers tend to grow due

to fragmentation unless steps are taken to keep the all the active data together. The

‘CreateRegion’ function makes this possible by allowing multiple regions to be

created within a single ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ to help

control the data density, data placement and the associated fragmentation.

The ‘CreateRegion’ function is part of a family of related functions. These are

‘CreateRegion’, ’ChangeRegion’ and ‘DeleteRegion’. There is no limit to the

number of regions that can be created within a ‘DATABASE_HEAP’ or

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP No Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP No Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 66

‘TRANSACTIONAL_HEAP’. A region does nothing until a call is made to

’ChangeRegion’. At this point, all future calls refer to the new region.

Consequently, all subsequent calls to ‘New’ and ‘Delete’ will create and delete

allocations in the new region. A call to ‘DeleteAll’ would delete all the allocations

in a specific region but leave allocations in other regions untouched. A region is very

much like a separate sub-heap within a heap.

The ‘NewRegionID’ parameter contains the ‘ID’ of the new region if

‘CreateRegion’ returns ‘True’. The ‘NewRegionID’ is required in subsequent

calls to ‘ChangeRegion’ and ‘DeleteRegion’.

A call to ‘CreateRegion’ is not transactional but is atomic and so will not leave any

associated ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ in an intermediate state.

When ‘CreateRegion’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.3. The BeginTransaction Function
The ‘BeginTransaction’ function creates a new transaction for the current thread

for a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. There may only be one open

transaction per thread at any time (see ‘AutomaticHeapScope’ for support of nested

transactions).

A technical specification of the ‘BeginTransaction’ function is as follows:

VIRTUAL BOOLEAN BeginTransaction(

 (

 FILE_ADDRESS *NewTransactionID = NULL,

 TRANSACTION_LOCK<HEAP> *Lock = NULL

)

The ‘BeginTransaction’ function creates a new transaction for the current thread

and is a requirement to create a transaction before making any calls to ‘Delete’,

‘ExclusiveView’, ‘New’, ‘Resize’, ‘SetUserValue’, ‘Update’ or ‘View’ on

a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

All calls to ‘Delete’, ‘ExclusiveView’, ‘New’, ‘Resize’, ‘SetUserValue’,

‘Update’ or ‘View’ on a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ will be

undone unless a successful matching call is made to ‘EndTransaction’. All the

above functions also take locks to ensure that other threads using the same memory

allocations do so in a consistent manor. The ‘ExclusiveView’, ‘New’, ‘Resize’,

‘SetUserValue’ and ‘Update’ functions claim exclusive locks on the related

allocations whereas the ‘View’ function only claims a sharable lock. The ‘Delete’

function marks an allocation for deletion at the end of the transaction but does not

lock it. Consequently, care must be taken not to do things like calling ‘Update’ on

an allocation when a call is made to ‘Delete’ has already been made, as any

changes will be lost at the end of the transaction.

Rockall-DB Heap Comments

DATABASE_HEAP New Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP New Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP New Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP New Transaction

Rockall-DB March 2016

67 The Rockall-DB Core | Rockall Software Ltd.

A transaction only applies to the specific instance of a heap on which the call to

‘BeginTransaction’ was made. Nonetheless, it does apply to all the regions within

this instance of the heap. Consequently, any calls to ‘ChangeRegion’ or subsequent

calls to make chnages are still viewed as part of the same transaction.

The optional ‘NewTransactionID’ parameter contains the ‘ID’ of the new

transaction if ‘BeginTransaction’ returns ‘True’. The ‘NewTransactionID’ is

required when calling ‘JoinTransaction’ which allows multiple threads to work

together on a single transaction (i.e. parallel transactions).

The optional ‘Lock’ parameter will update any supplied

‘TRANSACTION_LOCK<HEAP>’ and make it refer to an internal lock associated with

the transaction. The ‘Lock’ may then be used in the usual way to help manage the

threads working on the transaction.

The ‘AutomaticHeapScope’ class in the Rockall-DB library can be used to

automatically call ‘EndTransaction’ at the end of a scope to make programming

more straight-forward and reliable (see the ‘AutomaticHeapScope’ class).

When ‘BeginTransaction’ returns ‘False’ more information is usually available

by calling the ‘GetError’ function to return the error code.

5.3.4. The ChangeRegion Function
The ‘ChangeRegion’ function changes the current region on a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’. The ‘ChangeRegion’ function does not require a

transaction regardless of the type of Rockall-DB heap.

A technical specification of the ‘ChangeRegion’ function is as follows:

VIRTUAL BOOLEAN ChangeRegion

 (

 SBIT32 NewRegionID,

 SBIT32 *OldRegionID = NULL

)

A region can be thought of as a sub-heap within a heap. It is intended for advanced

users and enables very large data structures to be kept together in main memory or

within a file. A new region is created by calling ‘CreateRegion’ and deleted by

calling ‘DeleteRegion’.

The ‘NewRegionID’ parameter must contain a ‘NewRegionID’ previously returned

by a successful call to ‘CreateRegion’.

The optional ‘OldRegionID’ parameter will contain the ‘ID’ of the region prior to

the call to ‘ChangeRegion’ if it returns ‘True’. The ‘OldRegionID’ value can be

used in subsequent calls to ‘ChangeRegion’ to set the region back to its original

value (see the ‘AutomaticHeapScope’ class for the automatic management of

regions).

Rockall-DB Heap Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Supported

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Supported

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 68

When a call to ‘ChangeRegion’ returns ‘True’ all subsequent calls to ‘Delete’,

‘DeleteAll’, ‘Details’, ‘ExclusiveView’, ‘New’, ‘Resize’, ‘Size’,

‘Update’, ‘View’ and ‘Walk’ will subsequently refer to the new region.

Consequently, any calls to these functions for an allocation created in the previous

region will return ‘False’ as the previous region will no longer be visible.

When ‘ChangeRegion’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.5. The ExclusiveView Function
The ‘ExclusiveView’ function provides an exclusive read-only view of an allocation

on a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. The ‘ExclusiveView’

function requires an active transaction (see ‘BeginTransaction’ for more

information about transactions).

A technical specification of the ‘ExclusiveView’ function is as follows:

VIRTUAL BOOLEAN ExclusiveView

 (

 FILE_ADDRESS Address,

 VOID **Data,

 FILE_SIZE *Space = NULL

)

The ‘ExclusiveView’ function ensures an allocation is present in main memory and

then claims an exclusive lock on it. The ‘ExclusiveView’ function may optionally

be called recursively by any thread within the same transaction.

The ‘Address’ parameter must contain an ‘Address’ returned by a previous

successful call to either ‘New’ or ‘Resize’.

The ‘Data’ parameter will contain a pointer to the allocation in main memory if the

call to ‘ExclusiveView’ returns ‘True’. The ‘Data’ pointer returned remains

valid and the associated lock is held until a subsequent matching call is made to either

‘EndExclusiveView’, ‘EndTransaction’ or ‘CloseFile’. The value of the

‘Data’ pointer can vary on each call to ‘ExclusiveView’ and may not match the

value originally returned by ‘New’ or ‘Resize’. The supplied pointer is a direct

reference to the related section of the file stored in main memory. There are no

intermedatries or copies and it is an error to make any modifications to the data. If

any changes are made to the data the outcome is undefined. If an attempt is made to

read beyond the end of an allocation the outcome is also undefined. Clearly, direct

access is a very powerful double edged sword. It is certainly very fast but it also

requires some degree of care.

The optional ‘Space’ parameter will contain the actual number of bytes in the

allocation (see ‘New’ or ‘Resize’) if the call to ‘ExclusiveView’ returns

‘True’.

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

Rockall-DB March 2016

69 The Rockall-DB Core | Rockall Software Ltd.

A call to ‘ExclusiveView’ can return ‘False’ for a variety of reasons. These vary

from things like a physical file transfer error to automatic deadlock detection. A call

may be repeated if it fails but is likely to fail again for the same reason. In the case of

deadlock, the user can simply abort the current transaction (or one of the other related

transactions) by calling ‘EndTransaction’. Simply repeating the transaction should

resolve the issue in the majority of cases.

A nested call to ‘Update’ or ‘View’ after a successful call to ‘ExclusiveView’

within a transaction should always succeed as the allocation should already be in main

memory and be protected by an exclusive lock. Consequently, the ‘ExclusiveView’

function can be used to minimize the calls to the more expensive ‘Update’ function.

A general approach is typically to call ‘ExclusiveView’ to examine an allocation

and to only call ‘Update’ if any modifications are required.

The ‘AutomaticViewScope’ class in the Rockall-DB library can be used to

automatically call ‘EndExclusiveView’ at the end of a scope to make programming

more straight-forward and reliable (see the ‘AutomaticViewScope’ class).

A call to ‘EndExclusiveView’, ‘EndTransaction’ or ‘CloseFile’ will

automatically release all the resources associated with a call to ‘ExclusiveView’.

When ‘ExclusiveView’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.6. The EndExclusiveView Function
The ‘EndExclusiveView’ function releases all the resources related to a matching

call of the ‘ExclusiveView’ function within a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’. The ‘EndExclusiveView’ function requires an active

transaction (see ‘BeginTransaction’ for more information about transactions).

A technical specification of the ‘EndExclusiveView’ function is as follows:

VIRTUAL BOOLEAN EndExclusiveView

 (

 FILE_ADDRESS Address,

 BOOLEAN Reset = True

)

The ‘EndExclusiveView’ function will imediately release all the resources

associated with a previous successful call to ‘ExclusiveView’. Nonetheless, it may

optionally allow the allocation to remain in main memory for an unspecified amout of

time for performance reasons.

The ‘Address’ parameter must contain the ‘Address’ supplied by to a previous

successful call to ‘ExclusiveView’.

The ‘Reset’ parameter will reset the error code if set to ‘True’ but will leave it

unchanged if set to ‘False’. This is feature is sometimes helpful in the situation

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 70

where an error occurs within nested calls and ‘EndExclusiveView’ is called during

the unwinding these frames.

The ‘AutomaticViewScope’ class in the Rockall-DB library can be used to

automatically call ‘EndExclusiveView’ at the end of a scope to make programming

more straight-forward and reliable (see the ‘AutomaticViewScope’ class).

A call to ‘EndExclusiveView’, ‘EndTransaction’ or ‘CloseFile’ will

automatically release all the resources associated with a call to ‘ExclusiveView’.

When ‘EndExclusiveView’ returns ‘False’ more information is usually available

by calling the ‘GetError’ function to return the error code.

5.3.7. The JoinTransaction Function
The ‘JoinTransaction’ function allows multiple threads to work on a single

transaction within a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. A thread that

calls ‘JoinTransaction’ must not currently be part of a transaction on the related

heap.

A technical specification of the ‘JoinTransaction’ function is as follows:

VIRTUAL BOOLEAN JoinTransaction

 (

 FILE_ADDRESS TransactionID,

 TRANSACTION_LOCK<HEAP> *Lock = NULL

)

The ‘JoinTransaction’ function makes the calling thread part of an active

transaction. The calling thread becomes a full partner in the transaction and has

access to all the resources and rights associated with the transaction.

The ‘TransactionID’ parameter must contain a ‘TransactionID’ returned by a

previous successful call to ‘BeginTransaction’.

The optional ‘Lock’ parameter will update any supplied

‘TRANSACTION_LOCK<HEAP>’ and make it refer to an internal lock associated with

the transaction. The ‘Lock’ may then be used in the usual way to help manage the

threads working on the transaction.

It is typically necessary to add locking code when using ‘JoinTransaction’ as any

thread in the transaction will automatically get access to all the resources within the

transaction. Consequently, if two threads in the same transaction both call

‘ExclusiveView’ or ‘Update’ on the same allocation both threads will be granted

access (as locks in Rockall-DB are held by transactions and not by threads).

Any thread that is part of a transaction may call ‘EndTransaction’ but this call will

not complete and will wait until all the other threads in the transaction call

‘LeaveTransaction’ before ending the transaction.

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP No Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP No Transaction

Rockall-DB March 2016

71 The Rockall-DB Core | Rockall Software Ltd.

When ‘JoinTransaction’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.8. The LeaveTransaction Function
The ‘LeaveTransaction’ function allows a thread to leave a transaction within a

‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. A thread that calls

‘LeaveTransaction’ must be part of a transaction on the associated heap.

A technical specification of the ‘LeaveTransaction’ function is as follows:

VIRTUAL BOOLEAN LeaveTransaction(VOID)

The ‘LeaveTransaction’ function allows a thread to leave a transaction after

creating it with a call to ‘BeginTransaction’ or after joining it with a call to

‘JoinTransaction’.

All the threads associated with a transaction may leave it by calling

‘LeaveTransaction’. Nonetheless, at least one thread will eventually need to rejoin

the transaction in order to call ‘EndTransaction’ to complete it.

Any thread that is part of a transaction may call ‘EndTransaction’. Nonetheless,

this call will not complete and will wait until all the other threads in the transaction

call ‘LeaveTransaction’ before completing it.

When ‘LeaveTransaction’ returns ‘False’ more information is usually available

by calling the ‘GetError’ function to return the error code.

5.3.9. The Update Function
The ‘Update’ function allows an allocation to be transactionally updated within a

‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. The ‘Update’ function requires an

active transaction (see ‘BeginTransaction’ for more information about

transactions).

A technical specification of the ‘Update’ function is as follows:

VIRTUAL BOOLEAN Update

 (

 FILE_ADDRESS Address,

 VOID **Data,

 FILE_SIZE *Space = NULL

)

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 72

The ‘Update’ function ensures an allocation is present in main memory, claims an

exclusive lock and then makes a copy of its contents. The ‘Update’ function may

optionally be called recursively by any thread within the same transaction.

The ‘Address’ parameter must contain an ‘Address’ returned by a previous

successful call to ‘New’ or ‘Resize’.

The ‘Data’ parameter will contain a pointer to the allocation in main memory if the

call to ‘Update’ returns ‘True’. The ‘Data’ pointer returned remains valid and

the associated lock held until an appropriate call is made to ‘EndTransaction’. The

value of the ‘Data’ pointer can vary on each call to ‘Update’ and may not match

the value originally returned by ‘New’ or ‘Resize’. The ‘Data’ pointer may be

used to modify any part of the allocation at any time up to the call of

‘EndTransaction’. The supplied pointer is a direct reference to the section of the

file stored in main memory. There are no intermedatries or copies and any changes

will be reflected in the file when the buffer is written back after the transaction is

complete. Obviously, writing off the end of an allocation can damage other parts of

the file and/or data structures. Clearly, direct access is a very powerful double edged

sword. It is certainly very fast but it also requires some degree of care.

The optional ‘Space’ parameter will contain the actual number of bytes in the

allocation (see ‘New’ or ‘Resize’) if the call to ‘Update’ returns ‘True’.

A call to ‘Update’ can return ‘False’ for a variety of reasons. These vary from

things like a physical file transfer error to automatic deadlock detection. A call may

be repeated if it fails but is likely to fail again for the precisely same reason. In the

case of deadlock, the user can abort the current transaction (or one of the related

transactions) by calling ‘EndTransaction’. Simply repeating the transaction should

resolve the issue in the majority of cases.

A nested call to ‘ExclusiveView’ or ‘View’ after a successful call to ‘Update’ in

the same transaction should always succeed, as the allocation will already be in main

memory and be protected by an exclusive lock. The number of calls to ‘Update’

should be minimize where possible as each call requires an exclusive lock and

potentially a copy of the entire allocation in the database log.

A call to ‘EndTransaction’ or ‘CloseFile’ will automatically release all the

resources associated with a call to ‘Update’.

When ‘Update’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.3.10. The View Function
The ‘View’ function provides a sharable read-only view of an allocation within a

‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. The ‘View’ function requires an

active transaction (see ‘BeginTransaction’ for more information about

transactions).

A technical specification of the ‘View’ function is as follows:

Rockall-DB March 2016

73 The Rockall-DB Core | Rockall Software Ltd.

VIRTUAL BOOLEAN View

 (

 FILE_ADDRESS Address,

 VOID **Data,

 FILE_SIZE *Space = NULL

)

The ‘View’ function ensures an allocation is present in main memory and then claims

and sharable lock on it. The ‘View’ function may optionally be called recursively by

any thread within the same transaction.

The ‘Address’ parameter must contain an ‘Address’ returned by a previous

successful call to ‘New’ or ‘Resize’.

The ‘Data’ parameter will contain a pointer to the allocation in main memory if the

call to ‘View’ returns ‘True’. The ‘Data’ pointer returned remains valid and the

associated lock is held until a subsequent matching call is made to either ‘EndView’,

‘EndTransaction’ or ‘CloseFile’. The value of the ‘Data’ pointer can vary on

each call and may not match the value originally returned by ‘New’ or ‘Resize’.

The supplied pointer is a direct reference to the related section of the file stored in

main memory. There are no intermedatries or copies and it is an error to make any

modifications to the data. If any changes are made to the data the outcome is

undefined. If an attempt is made to read beyond the end of an allocation the outcome

is also undefined. Clearly, direct access is a very powerful double edged sword. It is

certainly very fast but it also requires some degree of care.

The optional ‘Space’ parameter will contain the actual number of bytes in the

allocation (see ‘New’ or ‘Resize’) if the call to ‘View’ returns ‘True’.

A call to ‘View’ can return ‘False’ for a variety of reasons. These vary from things

like a physical file transfer error to automatic deadlock detection. A call may be

repeated if it fails but is likely to fail again for the precisely same reason. In the case

of deadlock, a victim must select themselves and abort their own transaction by

calling ‘EndTransaction’. Simply repeating the transaction should resolve the issue

in the majority of cases.

A nested call to ‘ExclusiveView’ or ‘Update’ after a successful call to ‘View’ in

the same transaction should never succeed, as it is not possible to upgrade a shareable

lock to an exclusive lock. Consequently, a call to the ‘View’ function implies that

the allocation will read but not updated. It is safe to call ‘EndView’ and subsequently

call ‘ExclusiveView’ or ‘Update’ but the contents of the allocation could change

between these calls.

The ‘AutomaticViewScope’ class in the Rockall-DB library can be used to

automatically call ‘EndView’ at the end of a scope to make programming more

straight-forward and reliable (see the ‘AutomaticViewScope’ class).

A call to ‘EndView’, ‘EndTransaction’ or ‘CloseFile’ will automatically

release all the resources associated with a call to ‘View’.

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 74

When ‘View’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.3.11. The EndView Function
The ‘EndView’ function releases all the resources related to a matching call of the

‘View’ function within a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. The

‘EndView’ function requires an active transaction (see ‘BeginTransaction’ for

more information about transactions).

A technical specification of the ‘EndView’ function is as follows:

VIRTUAL BOOLEAN EndView

 (

 FILE_ADDRESS Address,

 BOOLEAN Reset = True

)

The ‘EndView’ function will imediately release all the resources associated with a

previous successful call to ‘View’. Nonetheless, it may optionally allow the

allocation to remain in main memory for an unspecified amout of time for

performance reasons.

The ‘Address’ parameter must contain an ‘Address’ returned by a previous

successful call to ‘View’.

The ‘Reset’ parameter will reset the error code if set to ‘True’ but will leave it

unchanged if set to ‘False’. This is feature is sometimes helpful in the situation

where an error occurs within nested calls and ‘EndView’ is called during the

unwinding these frames.

The ‘AutomaticViewScope’ class in the Rockall-DB library can be used to

automatically call ‘EndView’ at the end of a scope to make programming more

straight-forward and reliable (see the ‘AutomaticViewScope’ class).

A call to ‘EndView’, ‘EndTransaction’ or ‘CloseFile’ will automatically

release all the resources associated with a call to ‘View’.

When ‘EndView’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.3.12. The EndTransaction Function
The ‘EndTransaction’ function ends a transaction created by a previous call to

‘BeginTransaction’ for a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. There

may only be one active transaction per thread at any time (see

‘AutomaticHeapScope’ for support of nested transactions).

A technical specification of the ‘EndTransaction’ function is as follows:

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

Rockall-DB March 2016

75 The Rockall-DB Core | Rockall Software Ltd.

VIRTUAL BOOLEAN EndTransaction

 (

 BOOLEAN Abort = False,

 BOOLEAN Commit = False

)

The ‘EndTransaction’ function releases all the resources associated with a

transaction and terminates it. Any calls to ‘ExclusiveView’, ‘New’, ‘Resize’,

‘Update’ or ‘View’ on a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ are also

terminated as part of this process. Any ‘Data’ pointers returned by any of these calls

are no longer valid and any associated locks are released.

The ‘Abort’ parameter drastically changes the effects of the ‘EndTransaction’

function. If it is set to ‘False’ any updates are accepted and any call to ‘Delete’ is

executed and the associated allocations removed from a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’. If it is set to ‘True’ any calls to ‘Delete’, ‘New’,

‘Resize’, ‘SetUserValue’ or ‘Update’ are undone on a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’.

The ‘Commit’ parameter only applies to a ‘DATABASE_HEAP’. If it is set to ‘False’

the transaction will be committed asynchronously on the next commit cycle. The

commit cycle occurs regularly but it is possible that the whole transaction might be

lost if the system fails before this occurs. All transactions are committed in strict

order of completion and so this should not be an issue, as such a failure should only

lose the last few transactions. There is a huge performance advantage of setting

‘Commit’ to ‘False’ as the calling thread is immediately available for other work,

as it does not need to wait for any physical file transfer to complete. If ‘Commit’ is

set to ‘True’ the transaction will be committed synchronously and the thread will

wait until all completed transactions up to the point of the call on any thread have

been committed to the file. In rare situations (i.e. say 1 GB updates), this may take a

number of seconds to complete reducing the number of processing threads available

for work and so seriously impact the overall performance.

The ‘AutomaticHeapScope’ class in the Rockall-DB library can be used to

automatically call ‘EndTransaction’ at the end of a scope to make programming

more straight-forward and reliable (see the ‘AutomaticHeapScope’ class).

A call to ‘CloseFile’ will also release all the resources associated with a call to

‘BeginTransaction’ as it aborts all active transactions.

When ‘EndTransaction’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.13. The DeleteRegion Function
The ‘DeleteRegion’ function is intended for advanced users and deletes a sub-heap

within a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’. When ‘DeleteRegion’ is

called there must not be any active transactions on the heap.

A technical specification for ‘DeleteRegion’ is as follows:

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Needs a Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Needs a Transaction

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 76

VIRTUAL BOOLEAN DeleteRegion

 (

 SBIT32 RegionID

)

The ‘DeleteRegion’ function is part of a family of related functions. These are

‘CreateRegion’, ’ChangeRegion’ and ‘DeleteRegion’. There is no limit to the

number of regions that can be created within a ‘DATABASE_HEAP’ or

‘TRANSACTIONAL_HEAP’. A region is very much like a separate sub-heap within a

heap.

The ‘RegionID’ parameter must contain the ‘ID’ of an existing region returned by

a previous successful call to ‘CreateRegion’.

When a call to ‘DeleteRegion’ is made all of the contents of the region are deleted

in much the same way as a call to ‘DeleteAll’ and then the region itself is deleted.

A call to ‘DeleteRegion’ is not transactional but is atomic and so all or none of the

region will be deleted.

When ‘DeleteRegion’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.3.14. The CloseFile Function
The ‘CloseFile’ function closes a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

When ‘CloseFile’ is called there should not be any active transactions on the heap.

A technical specification of the ‘CloseFile’ function is as follows:

VIRTUAL BOOLEAN CloseFile(VOID)

The ‘CloseFile’ function closes a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’.

There should be no active transactions on the heap and it should be idle. If there are

active transactions an attempt will be made to automatically abort them so that all

future calls to the heap will fail. Regardless, it is fundamentally dangerous if the heap

is not idle as any active threads may have ‘Data’ pointers to areas in the heap and so

may crash as resources are deleted during clean up.

A call to ‘CloseFile’ on a ‘DATABASE_HEAP’ may take some time to complete as it

implies waiting for any active threads to complete and synchronously flushing all

changes back to the file.

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP No Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP No Transaction

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP No Transaction

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP No Transaction

Rockall-DB March 2016

77 The Rockall-DB Core | Rockall Software Ltd.

A call to ‘CloseFile’ on a ‘TRANSACTIONAL_HEAP’ deletes everything on the heap

in a similar way to calling ‘DeleteRegion’ on all the regions.

When ‘CloseFile’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.4. The Rockall-DB Database Functions
The Rockall-DB database functions are only available in a Rockall-DB

‘DATABASE_HEAP’ (see section 5.1 for a review of the Rockall-DB heaps). A table of

the Rockall-DB functions covered in this section is as follows:

Function Name Description
CreateShadowFile Create a bitwise replica of an active ‘DATABASE_HEAP’ file and keep it up-to-date.

CreateShapshotFile Create a stand-alone bitwise replica of an active ‘DATABASE_HEAP’ file.

OpenFile Open an existing ‘DATABASE_HEAP’ file and prepare it for active use.

Commit Wait until all completed transactions have been written to file.

FileSize Get the committed file size.

GetUserValue Get a user value previously stored by ‘SetUserValue’.

SetUserValue Store a user value in a reserved area within a ‘DATABASE_HEAP’ file.

Touch Asynchronously bring to memory an allocation previously created by ‘New’ or ‘Resize’.

CloseShadowFile Close a shadow file (i.e. the converse of ‘CreateShadowFile’).

Table-05-05

All of the functions listed in ‘Table-05-05’ are described in detail in the following

sections in the order they appear the table above.

5.4.1. The CreateShadowFile Function
The ‘CreateShadowFile’ function creates a bitwise replica of a ‘DATABASE_HEAP’

file and keeps it up-to-date. The ‘CreateShadowFile’ function can be called

regardless of whether there is an active transaction on the Rockall-DB heap.

A technical specification of the variants of the ‘CreateShadowFile’ function is as

follows:

VIRTUAL BOOLEAN CreateShadowFile

 (

 CHAR *FileName,

 SBIT32 *ID = NULL,

 BOOLEAN Wait = True

)

VIRTUAL BOOLEAN CreateShadowFile

 (

 WCHAR *FileName,

 SBIT32 *ID = NULL,

 BOOLEAN Wait = True

)

The ‘CreateShadowFile’ function comes in both ‘ACSII’ and ‘Unicode’ styles. A

call to ‘CreateShadowFile’ can only be made after a successful call to either

‘CreateFile’ or ‘OpenFile’. All of the parameters are optional except for the

‘FileName’ parameter which is mandatory.

The ‘FileName’ parameter is the name of a file. If the file does not exist a new file

will be created and the contents of the file opened by the call to ‘CreateFile’ or

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 78

‘OpenFile’ will be copied into it. If the file already exists and the database header

information is identical to the file opened by the call to ‘CreateFile’ or

‘OpenFile’ then no copying will be done. However, if the file already exists and the

header information is not identical then the contents of the file will be truncated and

the entire file rewritten and bought up-to-date. Regardless, once a shadow file is

active and up-to-date all new transactions will be replicated into it. Consequently, a

shadow file should always be a bitwise copy of the master file, except during commit

where it may lag by a few milliseconds. Any shadow file successfully closed by a

call to ‘CloseShadowFile’ or ‘CloseFile’ should (at the instant it is closed) be an

identical bitwise copy of the master file.

The ‘ID’ parameter, if specified, will contain a unique ‘ID’ which can be used in a

later call to ‘CloseShadowFile’. At the time of writing the ‘ID’ is always in the

range of 0 to 3, as there is currently a limit of 4 concurrently active shadow files.

The ‘Wait’ parameter, if specified, controls whether the caller will wait for any

copying of the shadow file to complete or whether it will return immediately.

A shadow file is a full member of a Rockall-DB ‘DATABASE_HEAP’ and is kept up-to-

date by the logger as part of the standard commit processing. Consequently, if a

shadow file has an error Rockall-DB will delay the commit and repeatedly try to

rewrite the data until it is successful. If a shadow file is slow for any reason then

Rockall-DB will wait for it to catch up. Consequently, the performance and reliability

of a shadow file can affect the overall performance of a Rockall-DB database.

Therefore, it is seldom wise to put any Rockall-DB shadow file onto busy or low

performing storage (i.e. like a USB stick or low performance remote storage) as this

may significantly increase the time it takes to commit transactions.

When ‘CreateShadowFile’ returns ‘False’ more information is usually available

by calling the ‘GetError’ function to return the error code.

5.4.2. The CreateSnapshotFile Function
The ‘CreateSnapshotFile’ function creates a bitwise replica of a

‘DATABASE_HEAP’ file. The ‘CreateSnapshotFile’ function can be called

regardless of whether there is an active transaction on the Rockall-DB heap.

A technical specification of the variants of the ‘CreateShadowFile’ function is as

follows:

VIRTUAL BOOLEAN CreateSnapshotFile

 (

 CHAR *FileName

)

VIRTUAL BOOLEAN CreateSnapshotFile

 (

 WCHAR *FileName

)

The ‘CreateSnapshotFile’ function comes in both ‘ACSII’ and ‘Unicode’ styles.

A call to ‘CreateSnapshotFile’ can only be made after a successful call to either

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

Rockall-DB March 2016

79 The Rockall-DB Core | Rockall Software Ltd.

‘CreateFile’ or ‘OpenFile’. A call to ‘CreateSnapshotFile’ is functionally

equivalent to calling ‘CreateShadowFile’ followed by ‘CloseShadowFile’.

The file created by ‘CreateSnapshotFile’ should be an exact replica of the file that

was opened by the call to ‘CreateFile’ or ‘OpenFile’ at the instant the call to

‘CreateSnapshotFile’ returns. All the same considerations apply to

‘CloseSnapshotFile’ as apply to ‘CloseShadowFile’ and there is a possibility

that the new file may contain partial transactions that will be recovered when the

snapshot is opened later by a call to ‘OpenFile’ (see ‘CloseShadowFile’ for

details).

When ‘CreateSnapshotFile’ returns ‘False’ more information is usually available

by calling the ‘GetError’ function to return the error code.

5.4.3. The OpenFile Function
The ‘OpenFile’ function prepares an existing ‘DATABASE_HEAP’ file for use. When

‘OpenFile’ is called there must not be any active transactions on the heap.

A technical specification of the variants of the ‘OpenFile’ function are as follows:

VIRTUAL BOOLEAN OpenFile

 (

 CHAR *FileName,

 BOOLEAN ReadOnly = False,

 ENCRYPTION_FUNCTION Function = NULL,

 VOID *UserValue = NULL

)

VIRTUAL BOOLEAN OpenFile

 (

 WCHAR *FileName,

 BOOLEAN ReadOnly = False,

 ENCRYPTION_FUNCTION Function = NULL,

 VOID *UserValue = NULL

)

typedef VOID (*ENCRYPTION_FUNCTION)

 (

 FILE_ADDRESS Address,

 VOID *Data,

 BOOLEAN Decrypt,

 BOOLEAN Encrypt,

 FILE_SIZE Size,

 VOID *UserValue

)

The ‘OpenFile’ function comes in both ‘ACSII’ and ‘Unicode’ styles. All of the

parameters are optional except for the ‘FileName’ parameter which is mandatory.

The ‘FileName’ parameter must contain the path to an existing Rockall-DB database

file. The file must already exist and have been previously created by a call to

‘CreateFile’. The contents and the format of the file are checked to ensure the file

meets the necessary requirements. If the file contains any partial transactions these

will be undone if ‘ReadOnly’ is set to ‘False’. The transactions will be undone as if

Rockall-DB Heap Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP No Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 80

they had been terminated with a call to ‘EndTransaction’ with the ‘Abort’ parameter

set to ‘True’. If any of these requirements are not met the ‘OpenFile’ function will

return ‘False’.

The optional ‘ReadOnly’ parameter controls how the file is opened. If the

‘ReadOnly’ parameter is set to ‘False’ then the file will be opened for reading and

writing and the contents of the file will be recovered if needed. The file will be

locked so that any other attempts to open the file will fail. If the ‘ReadOnly’

parameter is set to ‘True’ then the file will be opened for just reading and the call

will fail if any recovery is needed. The file will be locked so that further attempts to

open the file for reading will succeed but attempts to open the file for writing will fail.

The optional ‘Function’ parameter allows a user supplied ‘ENCRYPTION_FUNCTION’

to be supplied which will be called by Rockall-DB every time a data block is read or

written to the file. When a block is read the ‘ENCRYPTION_FUNCTION’ will be called

just after the read completes and it is required to immediately decrypt it. When a

block is written the ‘ENCRYPTION_FUNCTION’ will be called just before the write starts

and the it is required to immediately encrypt it. The meaning of the parameters

supplied to the ‘ENCRYPTION_FUNCTION’ is as follows:

The ‘Address’ parameter is the offset in the file (in bytes) of the start of block.

The ‘Data’ parameter is the memory address of the data to be encrypted or

decrypted.

The ‘Decrypt’ parameter will be ‘True’ if the ‘Data’ needs to be decrypted just

after it has been read otherwise it will be ‘False’.

The ‘Encrypt’ parameter will be ‘True’ if the ‘Data’ needs to be encrypted just

before a write otherwise it will be ‘False’.

The ‘Size’ parameter contains the number of bytes in the area to be encrypted or

decrypted.

The ‘UserValue’ parameter contains the ‘UserValue’ parameter initially passed to

’OpenFile’. This enables a user supplied value (or a pointer to a defined user

structure) to be passed to all invokations of the ‘ENCRYPTION_FUNCTION’.

Technically, the ‘ENCRYPTION_FUNCTION’ does not actually need to decrypt and

encrypt the data. Instead, it could use the opportunity to do some other form of

processing on the data. Regardless, damaging the data in any way may lead to grave

disorder in Rockall-DB and will likely corrupt the database.

When ‘OpenFile’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.4.4. The Commit Function
The ‘Commit’ function will wait until all completed transactions have been written to

the ‘DATABASE_HEAP’ file. The ‘Commit’ function can be called regardless of

whether there is an active transaction on the Rockall-DB heap.

Rockall-DB March 2016

81 The Rockall-DB Core | Rockall Software Ltd.

A technical specification of the ‘Commit’ function is as follows:

VIRTUAL BOOLEAN Commit(VOID)

The ‘Commit’ function will not return until all completed transactions have been

stored in the ‘DATABASE_HEAP’ file and in all related shadow files.

If ‘Commit’ is not called then the last few completed transactions can sometimes be

lost if the system fails before the automatic ‘Commit’ completes. All transactions are

written in strict order of completion so later transactions can never be kept if earlier

transactions are lost. Typically, this is all that is needed in most situations and so

there is seldom a need to call ‘Commit’. Nonetheless, if a thread needs to be certain

that a specific transaction has commited then ‘Commit’ will not return until this is

the case.

If a call to ‘Commit’ is made then logging will commence immediately, if not already

in progress. A call to ‘Commit’ does not affect any other functionality in Rockall-

DB as the call merely waits while all the outstanding transactions are written to the

‘DATABASE_HEAP’ file. Occasionally, this may take a few seconds if the number or

size of the changes is large (i.e. an ‘Update’ to an allocation of 1GB). Moreover, it

is prudent to minimise the number of calls to ‘Commit’ as far as possible and only

call it when absolutely necessary.

When ‘Commit’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.4.5. The FileSize Function
The ‘FileSize’ function returns the committed size of the ‘DATABASE_HEAP’ file.

The ‘FileSize’ function can be called regardless of whether there is an active

transaction on a Rockall-DB heap.

A technical specification of the ‘FileSize’ function is as follows:

VIRTUAL BOOLEAN FileSize

 (

 FILE_SIZE *Size

)

The ‘Size’ parameter will contain the ‘committed file size’ in bytes if a call to

‘FileSize’ returns ‘True’. The ‘committed file size’ is not the actual size of the

file but rather the size it would be if it was immediately closed by a call to

‘CloseFile’.

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 82

A Rockall-DB file typically contains a certain degree of padding while it is in use.

This padding is automatically truncated when the file is closed by a call to

‘CloseFile’. Consequently, there is often a significant delta between the ‘actual file

size’ and the ‘committed file size’ during processing.

When ‘FileSize’ returns ‘False’ more information is usually available by calling

the ‘GetError’ function to return the error code.

5.4.6. The GetUserValue Function
The ‘GetUserValue’ function will return a value previously stored by a call to

‘SetUserValue’ in the reserved area of a ‘DATABASE_HEAP’ file. The

‘GetUserValue’ function can be called regardless of whether there is an active

transaction on the Rockall-DB heap.

A technical specification of the ‘GetUserValue’ function is as follows:

VIRTUAL BOOLEAN GetUserValue

 (

 SBIT32 ID,

 FILE_ADDRESS *Value

)

The ‘GetUserValue’ function is part of a mechanism which allows users to reliably

locate specific allocations within a ‘DATABASE_HEAP’ file. This mechanism has been

designed so that it is still available even if Rockall-DB is not in use.

The ‘ID’ parameter is a unique user supplied value which identifies the value being

loaded. It is recommended that the value of an ‘ID’ should be small (i.e. less than

16) but there are no actual restrictions besides that it must be positive.

The ‘Value’ parameter will contain any value previously stored by a call to

‘SetUserValue’ if a call to ‘GetUserValue’ returns ‘True’. If there was no

previous call to ‘SetUserValue’ it will contain zero. Typically, a ‘Value’ will be a

‘FILE_ADDRESS’ (i.e. ‘Address’) returned by a previous call to ‘New’ or

‘Resize’. The ‘Value’ can then be used in subsequent calls to ‘ExclusiveView’,

‘Update’ or ‘View’ to load the associated allocation into memory. Typically, this

would be the root of a more complex data structure containing other ‘FILE_ADDRESS’

(i.e. ‘Address’) values which could then be accessed using the same steps as outlined

above.

The ‘GetUserValue’ and ‘SetUserValue’ functions are typically most useful

when opening an existing ‘DATABASE_HEAP’ file. Here, it is often necessary to find

the root of an existing data structure in the file. The ‘GetUserValue’ and

‘SetUserValue’ functions are intended to make this easy by allowing one or more

arbitrary ‘FILE_ADDRESS’ (i.e. ‘Address’) values to be stored in the specially

reserved area within the ‘DATABASE_HEAP’ file.

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

Rockall-DB March 2016

83 The Rockall-DB Core | Rockall Software Ltd.

Technically, it is not necessary to call ‘GetUserValue’ to read a stored user value.

The location of all the user values is always at the ‘Address’ pointed to by the first

eight bytes (i.e. a ‘FILE_ADDRESS’) in a ‘DATABASE_HEAP’ file. Let’s call this value

the ‘BASE’ address. A specific user value with an ‘ID’ of ‘X’ is always stored at

‘BASE+(X*sizeof(FILE_ADDRESS))’ within the ‘DATABASE_HEAP’ file.

Consequently, any user value in a ‘DATABASE_HEAP’ can be found without any use of

Rockall-DB. Furthermore, as the ‘Address’ returned by calls to ‘New’ or

‘Resize’ are also of type ‘FILE_ADDRESS’ it is also possible to navigate between

allocations without using Rockall-DB in the same way.

Just for completeness, it should be noted that the second eight bytes in a

‘DATABASE_HEAP’ file contain the ‘ByteSex’ of the ‘DATABASE_HEAP’ file. If this

value is loaded it should be equal to the constant ‘0x0001020304050607’. If not, then

the ‘ByteSex’ of the current machine is different from the machine that originally

created the ‘DATABASE_HEAP’ file. Consequently, all the ‘FILE_ADDRESS’ values

(and any other data with the incorrect ‘ByteSex’) will need to be converted to the

correct ‘ByteSex’ before use.

The ability to navigate a ‘DATABASE_HEAP’ file without using Rockall-DB makes it

truly ‘open’, to a degree seldom seen in database products. Certainly, there is no need

to be concerned about propriety formats or being ‘locked-in’ with Rockall-DB, as

user data can always be directly accessed (i.e. as outlined above). Consequently,

Rockall-DB is a good tool for designing and building open standards, as it is easy to

use and allows its presence to be hidden behind an alternative file navigation

mechanism.

When ‘GetUserValue’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.4.7. The SetUserValue Function
The ‘SetUserValue’ function stores a user supplied value in a reserved area of a

‘DATABASE_HEAP’ file. The ‘SetUserValue’ function requires an active transaction

(see ‘BeginTransaction’ for more information about transactions).

A technical specification of the ‘SetUserValue’ function is as follows:

VIRTUAL BOOLEAN SetUserValue

 (

 SBIT32 ID,

 FILE_ADDRESS Value

)

The ‘SetUserValue’ function is part of a mechanism which allows users to reliably

locate specific allocations within a ‘DATABASE_HEAP’ file. This mechanism has been

designed so that it is still available even if Rockall-DB is not in use.

The ‘ID’ parameter is a unique user supplied value which identifies the value being

stored. It is recommended that the value of an ‘ID’ should be small (i.e. less than 16)

but there are no actual restrictions besides that it must be positive. When a call is

Rockall-DB Heap Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Needs a Transaction

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Core 84

made to ‘GetUserValue’ with the same ‘ID’ the value stored by the call to

‘SetUserValue’ will be returned.

The type of the ‘Value’ parameter is a ‘FILE_ADDRESS’ but it may contain any

compatible value. Typically, a ‘Value’ would be a ‘FILE_ADDRESS’ (i.e.

‘Address’) returned by a previous call to ‘New’ or ‘Resize’ referring to an

allocation at the root of a more complex data structure (see ‘GetUserValue’ above).

The ‘GetUserValue’ and ‘SetUserValue’ functions are typically most useful

when opening an existing ‘DATABASE_HEAP’ file. Here, it is often necessary to find

the root of an existing data structure in the file. The ‘GetUserValue’ and

‘SetUserValue’ functions are intended to make this easy by allowing one or more

arbitrary ‘FILE_ADDRESS’ (i.e. ‘Address’) values to be stored in the specially

reserved area within the ‘DATABASE_HEAP’ file.

When ‘SetUserValue’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

5.4.8. The Touch Function
The ‘Touch’ function ensures an allocation returned by a previous call to ‘New’ or

‘Resize’ is already in main memory. If not, it will try to asynchronously load it into

main memory from the associated ‘DATABASE_HEAP’ file. The ‘Touch’ function can

be called regardless of whether there is an active transaction on a Rockall-DB heap.

A technical specification of the ‘Touch’ function is as follows:

VIRTUAL BOOLEAN Touch

 (

 FILE_ADDRESS Address

)

The ‘Address’ parameter should contain a ‘FILE_ADDRESS’ returned by a previous

call to ‘New’ or ‘Resize’. The associated page (i.e. typically 64k) will be

asynchronously loaded into main memory if it is not already present.

The ‘Touch’ function can significantly improve the overall performance of calls

such as ‘Delete’, ‘ExclusiveView’, ‘Resize’, ‘Update’ and ‘View’ in a

‘DATABASE_HEAP’ when the associated allocation is not already in main memory. A

call to ‘Touch’ must be made well-ahead of any expected use, so as to give the I/O

sub-system plenty of time to read the associated page from the file. If not, then the

overheads of a call to ‘Touch’ will usually exceed any of the potential benefits.

It is not necessary to call ‘Touch’ more than once per page (i.e. typically 64k) in

Rockall-DB. Consequently, if multiple ‘Address’ values fall within a single page

then only one call to ‘Touch’ is necessary to load all the related allocations.

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

Rockall-DB March 2016

85 The Rockall-DB Core | Rockall Software Ltd.

A large number of calls to ‘Touch’ can sometimes exceed the I/O subsystems ability

to service the requests. There are no restrictions in Rockall-DB and it is easily

possible to make the I/O subsystem scream with pain. Under such circumstances, it is

unlikely that other processes will receive good I/O service and this may lead to other

issues. Under extreme load, ‘Touch’ will move to synchronous mode when it runs

out of resources. Consequently, some thought is needed when using ‘Touch’,

especially in regards to large data sets (i.e. say over 1,000 pages or 200MB).

A call to ‘Touch’ has similar cost as a call to ‘ExclusiveView’ or ‘View’ and so

should not be made carelessly. It should be viewed as an investment of CPU time to

reduce I/O wait time. A good example of using ‘Touch’ is provided in the

‘ROW_SET’ class in the Rockall-DB library.

When ‘Touch’ returns ‘False’ more information is usually available by calling the

‘GetError’ function to return the error code.

5.4.9. The CloseShadowFile Function
The ‘CloseShadowFile’ function closes a shadow file previously created by a call to

‘CreateShadowFile’. The ‘CloseShadowFile’ function can be called regardless of

whether there is an active transaction on the Rockall-DB heap.

A technical specification of the ‘CloseShadowFile’ function is as follows:

VIRTUAL BOOLEAN CloseShadowFile

 (

 SBIT32 ID = 0

)

The ‘ID’ parameter should be the ‘ID’ returned from a previous call to

‘CreateShadowFile’. The default value is zero as this is the first ‘ID’ returned by

‘CreateShadowFile’ and so is valid if there is only one active shadow file at a time.

A shadow file is closed after a commit is complete. Nonetheless, there may still be

incomplete transactions within a shadow file. Any such transactions will be

automatically rolled back and the file recovered the first time it is opened by a call to

‘OpenFile’ with the ‘ReadOnly’ parameter is set to ‘False’.

A call to ‘OpenFile’ on a shadow file with the ‘ReadOnly’ parameter is set to

‘True’ can fail as it may not be possible to undo any partial transactions. In this

case, a successful call to ‘OpenFile’ with the ‘ReadOnly’ parameter is set to

‘False’ should be made followed by a call to ‘CloseFile’. A call to ‘OpenFile’

with the ‘ReadOnly’ parameter is set to ‘True’ should then succeed as any

recovery should have taken place.

When ‘CloseShadowFile’ returns ‘False’ more information is usually available by

calling the ‘GetError’ function to return the error code.

Rockall-DB Heap Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Not Supported

SINGLE_THREADED_HEAP Not Supported

TRANSACTIONAL_HEAP Not Supported

AUTOMATIC_HEAP_SCOPE Comments

DATABASE_HEAP Any State

MULTI_THREADED_HEAP Does nothing

SINGLE_THREADED_HEAP Does nothing

TRANSACTIONAL_HEAP Does nothing

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 86

6. The Rockall-DB Library
The Rockall-DB library is a collection of classes built on top of the Rockall-DB core

(as described in chapter 3 and chapter 5 above). The Rockall-DB library contains a

range of functionality, such as hash tables, queues, sets, stacks, strings and trees (i.e.

indexes), with or without locks, which work on all of the Rockall-DB heaps. The

library is provided in source code as a collection of C++ template classes.

Consequently, the Rockall-DB library is not only useful as a tool-set but also as a

collection of practical examples.

In the following sections we will examine all of the classes in the Rockall-DB library

and briefly describe their use.

6.1. The Rockall-DB Library Core
A number of the source files in the Rockall-DB library are part to the Rockall-DB

core (as described in chapter 3 and chapter 5 above) and are as follows:

File Name Chapters Description
DatabaseHeap.hpp 3 & 5.1 A multi-threaded in file transactional heap

MultiThreadedHeap.hpp 3 & 5.1 A multi-threaded in memory heap.

SingleThreadedHeap.hpp 3 & 5.1 A single threaded in memory heap.

TransactionalHeap.hpp 3 & 5.1 A multi-threaded in memory transactional heap.

VirtualHeap.hpp 3 The virtual base class for all Rockall-DB heaps.

Table-06-01

Additionally, a number of other files are only intended for internal use and so are not

documented in this manual or directly supported, except in regards to the wider

product. A list of these file is provided in the table below:

File Name Chapters Description
BaseTypes.hpp N/A A collection of internal type names.

CompilerFlags.hpp N/A A collection of internal compiler related flags.

Error.hpp N/A A collection of Rockall-DB error codes.

ExportFailure.hpp N/A An internal class for exporting ‘FAILURE’.

ExportFileLock.hpp N/A An internal class for exporting ‘FILE_LOCK’.

ExportHeap.hpp N/A An internal class for exporting the heap interface.

ExportMemoryLock.hpp N/A An internal class for exporting ‘MEMORY_LOCK’.

ExportThreadLocalStore.hpp N/A An internal class for exporting ‘TLS’ memory.

Failure.hpp N/A An internal class to support ‘FAILURE’.

MemoryFunctions.hpp N/A A collection internal memory copying functions.

PublicConstants.hpp N/A A collection of internal public constants.

ReservedWords.hpp N/A A collection of internal reserved words.

String.hpp N/A A base class related to strings.

StringFunctions.hpp N/A A collection internal string functions.

SubSet.hpp N/A A support class related to sets.

SubString.hpp N/A A support class related to strings.

VirtualThreadLocalStore.hpp N/A An internal class to support ‘TLS’ memory.

Table-06-02

6.2. The Rockall-DB Library Data Structures
A number of the files in the Rockall-DB library implement classical software data

structures and are as follows:

Rockall-DB March 2016

87 The Rockall-DB Library | Rockall Software Ltd.

File Name Chapters Description
AutomaticHeapScope.hpp 6.2.1. The heart of the Rockall-DB library.

FixedString.hpp 6.2.2. A class for fixed length strings.

FlexibleString.hpp 6.2.3. A class for variable length strings.

Hash.hpp 6.2.4. A class for hash tables (i.e. lookup tables).

Queue.hpp 6.2.5. A class for queues (i.e. FIFO tables).

RowSet.hpp 6.2.6. A class for grouping row sets (i.e. RIDs).

Set.hpp 6.2.7. A class for storing a sorted set of values.

Stack.hpp 6.2.8. A class for stacks (i.e. LIFO tables).

Tree.hpp 6.2.9. A class for multi-way trees (i.e. indexes).

Table-06-03

All of the classes listed in ‘Table-06-03’ use the ‘AutomaticHeapScope.hpp’ class

as a foundation. Consequently, it is suggested that the information relating to this

class should be fully understood before moving on to any of the other classes listed in

this table.

6.2.1. The AutomaticHeapScope Class
The ‘AUTOMATIC_HEAP_SCOPE’ class provides a unified methodology for using all of

the Rockall-DB heaps and is used throughout the Rockall-DB library. An

‘AUTOMATIC_HEAP_SCOPE’ can be easily created as shown in ‘Example-06-01’

below:

#include "AutomaticHeapScope.hpp"

#include "SingleThreadedHeap.hpp"

#include "Stack.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope1(& Heap);

 STACK<HEAP_TYPE,NO_LOCK,int> Stack;

 int Result = 1;

 if (Stack.PushValue(0))

 { Result = 0; }

 return Result;

 }

Example-06-01

The ‘AUTOMATIC_HEAP_SCOPE’ class exists because it is not possible to pass

parameters to every kind of function in C++ (or related languages like C# and Java).

In particular, it is not possible to pass parameters to destructors in most

implementations of C++. Obviously, this is a serious issue if a destructor needs to

delete an object but does not know which heap to use. It is not possible to use

pointers as an object may be stored in a file (i.e. a ‘DATABASE_HEAP’). Consequently,

a consistent mechanism is needed to ensure that functions can always find the

appropriate heap and any related data.

The ‘STACK’ class in ‘Example-06-01’ uses the ‘Heap’ supplied to the

‘AUTOMATIC_HEAP_SCOPE’ class in the definition of ‘Scope1’. All the Rockall-DB

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 88

library classes automatically use closest ‘AUTOMATIC_HEAP_SCOPE’ of the same type

(i.e. ‘HEAP_TYPE’ in this case) to find the appropriate heap (i.e. ‘Heap’ in this case).

Consequently, the ‘AUTOMATIC_HEAP_SCOPE’ class can be used to remove the need to

pass the heap (i.e. ‘Heap’) as a parameter to the ‘STACK’ class constructor, the call

to ‘PushValue’ or the class destructor. Instead, these functions contain a definition

of the style shown in ‘Example-06-02’ below:

template <class HEAP,class LOCK,class VALUE>

 BOOLEAN STACK<HEAP,LOCK,VALUE>::PushValue(VALUE Value)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope2;

 // The rest of the implementation of the function.

 }

Example-06-02

The inheritance of ‘Heap’ from ‘Scope1’ into ‘Scope2’ occurs because the type of

the ‘AUTOMATIC_HEAP_SCOPE’ class in ‘Scope1’ matches ‘Scope2’ (i.e. they are

both resolve to ‘SINGLE_THREADED_HEAP’). It will be seen later that this automatic

inheritance can be overridden if desired. However, in this case as no new values are

provided for ‘Scope2’ the values will be inherited directly from the closest instance

of the same type (i.e. ‘Scope1’).

Now, the code in ‘Example-06-01’ only works for a ‘SINGLE_THREADED_HEAP’ and

a ‘MULTI_THREADED_HEAP’. A ‘DATABASE_HEAP’ and a ‘TRANSACTIONAL_HEAP’

both require some additional calls as shown in ‘Example-06-03’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "RockallTypes.hpp"

#include "Stack.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 int Result = 1;

 if (Count == 2)

 {

 BOOLEAN Active;

 if ((Active = (Scope.CreateFile(Argument[1]))))

 {

 STACK<HEAP_TYPE,NO_LOCK,int> Stack;

 if (Stack.PushValue(0))

 { Result = 0; }

 }

 if (Active)

 { Scope.CloseFile(); }

 }

Rockall-DB March 2016

89 The Rockall-DB Library | Rockall Software Ltd.

 return Result;

 }

Example-06-03

The addition of the calls to ‘CreateFile’ and ‘CloseFile’ mean that ‘Example-

06-03’ will now work with all of the Rockall-DB heaps.

There may seem to be a mistake in ‘Example-06-03’ because a ‘DATABASE_HEAP’

typically requires a transaction scope for certain operations (i.e. ‘New’, ‘Resize’,

‘Delete’, etc.) and this appears to be missing. However, all of the data structure

classes in the Rockall-DB library automatically create a transaction if one does not

already exist, except for the ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes.

Consequently, the code in ‘Example-06-03’ actually contains 3 transactions which are

hidden within the ‘STACK’ class. The first is in the constructor for the ‘STACK’ class,

the next is in the call to ‘PushValue’ and the last is in the destructor for the ‘STACK’

class. These 3 transactions can be merged into a single transaction as shown in

‘Example-06-04’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "RockallTypes.hpp"

#include "Stack.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 int Result = 1;

 if (Count == 2)

 {

 BOOLEAN Active;

 if ((Active = (Scope.CreateFile(Argument[1]))))

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope2;

 if (Scope2.BeginTransaction())

 {

 STACK<HEAP_TYPE,NO_LOCK,int> Stack;

 if (Stack.PushValue(0))

 { Result = 0; }

 }

 }

 if (Active)

 { Scope.CloseFile(); }

 }

 return Result;

 }

Example-06-04

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 90

Now, in ‘Example-06-04’ we see an outer ‘AUTOMATIC_HEAP_SCOPE’ called

‘Scope1’ which is used to create and close the associated file. We also see an inner

‘AUTOMATIC_HEAP_SCOPE’ called ‘Scope2’ which is used to create a new

transaction (see ‘BeginTransaction’ in section 5.3.3). The ‘STACK’ class will

now no longer automatically create a new transaction within the ‘STACK’

constructor, the call to ‘PushValue’ and the ‘STACK’ destructor and will instead

use the existing outer transaction associated with ‘Scope2’.

Again, there may appear to be a mistake in ‘Example-06-04’ as there is no call to

‘EndTransaction’ in the code. This is not necessary because the

‘AUTOMATIC_HEAP_SCOPE’ class automatically calls ‘EndTransaction’ in its

destructor if a call to ‘BeginTransaction’ is made without a matching call to

‘EndTransaction’ (i.e. in this case ‘Scope2’). This feature of

‘AUTOMATIC_HEAP_SCOPE’ is present to try to minimize the number of situations

were transactions are opened but not properly closed.

Now, while it is not necessary to pass an instance of ‘AUTOMATIC_HEAP_SCOPE’ as a

parameter to most functions in the Rockall-DB library there is a performance impact

associated with avoiding it. Consequently, an instance of ‘AUTOMATIC_HEAP_SCOPE’

can optionally be passed as the first parameter to most calls in The Rockall-DB library

to avoid this overhead as shown in ‘Example-06-05’ below:

#include "AutomaticHeapScope.hpp"

#include "DatabaseHeap.hpp"

#include "RockallTypes.hpp"

#include "Stack.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 int Result = 1;

 if (Count == 2)

 {

 BOOLEAN Active;

 if ((Active = (Scope.CreateFile(Argument[1]))))

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope2;

 if (Scope2.BeginTransaction())

 {

 STACK<HEAP_TYPE,NO_LOCK,int> Stack(& Scope2);

 if (Stack.PushValue(& Scope2,0))

 { Result = 0; }

 }

 }

 if (Active)

 { Scope.CloseFile(); }

 }

Rockall-DB March 2016

91 The Rockall-DB Library | Rockall Software Ltd.

 return Result;

 }

Example-06-05

We have now reached the situation where ‘Example-06-05’ is almost optimal for a

‘DATABASE_HEAP’. Regardless, it should be noted that the same code will still work

for a ‘SINGLE_THREADED_HEAP’, a ‘MULTI_THREADED_HEAP’ and a

‘TRANSACTIONAL_HEAP’ and will still be fairly optimal for all of these cases. This is

because the ‘AUTOMATIC_HEAP_SCOPE’ class allows the C++ compiler to

automatically optimize away code that is not applicable to the associated heap.

Let’s consider the case where the ‘HEAP_TYPE’ is ‘SINGLE_THREADED_HEAP’ and a

call is made to the ‘CreateFile’ function in the ‘AUTOMATIC_HEAP_SCOPE’ class.

The general structure of the ‘CreateFile’ function in this case is as shown in

‘Example-06-06’ below:

template <class HEAP>

 BOOLEAN AUTOMATIC_HEAP_SCOPE<HEAP>::CreateFile

 (

 CHAR *FileName,

 ENCRYPTION_FUNCTION Function,

 VOID *UserValue

)

 {

 if (Heap -> Feature(RockallTransactionalSupport))

 { return (Heap -> CreateFile(FileName,Function,UserValue)); }

 else

 { return True; }

 }

Example-06-06

The key to understanding ‘Example-06-06’ is centered on the call to the function

‘Feature’. This function has been written so it compiles to a constant value of either

‘True’ or ‘False’. When the value of the template parameter for ‘HEAP’ is

‘SINGLE_THREADED_HEAP’ this compiles to the constant ‘False’ and after

optimization by the C++ compiler the resulting code is approximately as shown in

‘Example-06-07’ below:

template <class HEAP>

 BOOLEAN AUTOMATIC_HEAP_SCOPE<HEAP>::CreateFile

 (

 CHAR *FileName,

 ENCRYPTION_FUNCTION Function,

 VOID *UserValue

)

 { return True; }

Example-06-07

Now, this kind of optimization occurs for any calls that are not supported by the

related heap. Consequently, it is typical for almost all of the unnecessary code to

simply evaporate during the optimization phase of the C++ compiler. If we take

‘Example-06-05’ above and simply change ‘HEAP_TYPE’ from ‘DATABASE_HEAP’

to ‘SINGLE_THREADED_HEAP’ the code that actually gets generated by the C++

compiler should be close to ‘Example-06-08’ below:

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 92

#include "AutomaticHeapScope.hpp"

#include "SingleThreadedHeap.hpp"

#include "Stack.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 int Result = 1;

 if (Count == 2)

 {

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope2;

 STACK<HEAP_TYPE,NO_LOCK,int> Stack(& Scope2);

 if (Stack.PushValue(& Scope2,0))

 { Result = 0; }

 }

 return Result;

 }

Example-06-08

The code generated by the compiler in ‘Example-06-08’ is fairly close to the original

code that we outlined at the start of this chapter in ‘Example-06-01’. Consequently,

we can see that the ‘AUTOMATIC_HEAP_SCOPE’ class permits a single version of the

code to be written that it works efficiently for all of the Rockall-DB heaps.

The ‘AUTOMATIC_HEAP_SCOPE’ class also supports other features to support regions

(i.e. ‘CreateRegion’, ‘ChangeRegion’ and ‘DeleteRegion’) and strings (i.e.

‘FIXED_STRING’ and ‘FLEXIBLE_STRING’). These features are also accessed via

the constructor for the ‘AUTOMATIC_HEAP_SCOPE’ class which is approximately as

shown in ‘Example-06-09’ below:

template <class HEAP>

 AUTOMATIC_HEAP_SCOPE<HEAP>::AUTOMATIC_HEAP_SCOPE

 (

 HEAP *Heap,

 SBIT32 Region = NoRegion,

 SBIT16 Truncate = False

);

Example-06-09

We have already discussed the ‘Heap’ parameter in some detail, so we will now

move on the ‘Region’ and ‘Truncate’ parameters.

When a region is created by a call to ‘CreateRegion’ it returns an ‘ID’. A new

region can be selected by calling ‘ChangeRegion’ and passing the ‘ID’ as a

parameter. When the region is no longer needed ‘ChangeRegion’ can be called

again but with the original ‘ID’ as a parameter. All of this can also be automated by

the ‘AUTOMATIC_HEAP_SCOPE’ class by simply supplying the ‘ID’ as the second

parameter to its constructor. The ‘AUTOMATIC_HEAP_SCOPE’ class will then

Rockall-DB March 2016

93 The Rockall-DB Library | Rockall Software Ltd.

automatically change to the required region during the scope of the instance and then

automatically change back to the original region at the end of the scope.

Next, we shall take a brief look at the ‘Truncate’ parameter which applies to the

‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes. If the ‘Truncate’ parameter is

set to ‘True’ then strings that are too long to be stored in an instance of either class

are simply truncated instead of failing with an exception.

It can be argued that the ‘AUTOMATIC_HEAP_SCOPE’ class should always be used in

preference to making direct calls to the native Rockall-DB heaps. There is very little

down side and it often adds a significant degree of flexibility. Regardless, the

‘AUTOMATIC_HEAP_SCOPE’ class is the cornerstone of the Rockall-DB library and so

a good understanding of its functionality is important to maximize its value.

6.2.2. The FixedString Class
The ‘FIXED_STRING’ class supports fixed sized ‘ASCII’ and ‘Unicode’ strings for

all of the Rockall-DB heaps. It is important to have a good understanding of the

‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘FIXED_STRING’

and ‘FLEXIBLE_STRING’ classes, as they are closely related. Any use of the

‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes is entirely optional in Rockall-

DB and they primarily exist to simplify the storage of strings in a ‘DATABASE_HEAP’.

The ‘FIXED_STRING’ class requires three template parameters to configure it. These

are the type of Rockall-DB heap, the type of characters in the string and the size of the

string. The ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes are unusual in that

they require a transactional scope (see ‘BeginTransaction’ in section 5.3.3) when

used with a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ but will not

automatically create a new transaction if one is needed.

The ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes share much of the same

code and data structures. The key difference is that a ‘FIXED_STRING’ is an instance

of an internal template class called ‘ROCKALL::STRING’ whereas a

‘FLEXIBLE_STRING’ is a pointer to an instance of this class. This may seem like a

small change but the performance implications can be very significant as a

‘FIXED_STRING’ typically makes no use of any related heap functionality whereas a

‘FLEXIBLE_STRING’ typically makes considerable use of it.

The functions supported by the ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes

are shown in ‘Table-06-04’ below:

Function Description
Assignment Assign a new value to a string.

Compare Compare two strings.

Join Join two strings.

Lower Convert a string to lower case.

Size Compute the number of characters in a string.

Upper Convert a string to upper case.

Value Supply all the characters in a string.

‘=’ See ‘Assignment’ above.

‘==’ ‘>’ ‘>=’

‘!=’ ‘<’ ‘<=’

See ‘Compare’ above.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 94

‘+=’ See ‘Join’ above.

Table-06-04

It is hard to cover all the functionality of the ‘FIXED_STRING’ and

‘FLEXIBLE_STRING’ classes without getting bogged down in details. Consequently,

we shall focus on ‘Example-06-10’ which demonstrates most of the functionality

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> ASCII_STRING;

typedef FIXED_STRING<HEAP_TYPE,wchar_t,64> WIDE_STRING;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 ASCII_STRING String1;

 ASCII_STRING String2 = "Any ascii text";

 ASCII_STRING String3 = String2;

 WIDE_STRING String4;

 WIDE_STRING String5 = L"Any wchar text";

 WIDE_STRING String6 = String5;

 FILE_SIZE StringSize;

 char Value1[64];

 wchar_t Value2[64];

 String1 = String5;

 String4 = String2;

 String1 += " + add more ascii text";

 String4 += L" + add more wchar text";

 if

 (

 (String1 == "Test ascii string")

 &&

 (String1 != String2)

 &&

 (String1 > "Test ascii string")

 &&

 (String1 >= String2)

 &&

 (String1 < "Test ascii string")

 &&

 (String1 <= String2)

 &&

 (String1.Size(& StringSize))

 &&

 (String1.Lower())

 &&

Rockall-DB March 2016

95 The Rockall-DB Library | Rockall Software Ltd.

 (String1.Size(& StringSize))

 &&

 (String1.Upper())

 &&

 (String1.Value(& Scope,64,& StringSize,Value1))

)

 { printf("We can compare ascii strings\n"); }

 if

 (

 (String4 == L"Test wchar string")

 &&

 (String4 != String5)

 &&

 (String4 > L"Test wchar string")

 &&

 (String4 >= String5)

 &&

 (String4 < L"Test wchar string")

 &&

 (String4 <= String5)

 &&

 (String4.Lower())

 &&

 (String4.Size(& StringSize))

 &&

 (String4.Upper())

 &&

 (String4.Value(& Scope,64,& StringSize,Value2))

)

 { printf("We can compare wchar strings\n"); }

 return 0;

 }

Example-06-10

We can see from the declarations of ‘String1’, ‘String2’ and ‘String3’ that

we can create an empty ‘ASCII’ string, assign an ‘ASCII’ string an initial value and

initialize an ‘ASCII’ string from another string respectively. Furthermore, we can

see from the declarations of ‘String4’, ‘String5’ and ‘String6’ that can do the

same for ‘Unicode’ strings.

We can see from the statements ‘String1 = String5’ and ‘String4 =

String2’ that we can assign a ‘Unicode’ string to an ‘ASCII’ string and vice

versa.

We see from the ‘if’ statements that both ‘ASCII’ and ‘Unicode’ strings can be

compared to constants and other strings of the same type.

Finally, we observe a number of functions such as ‘Lower’, ‘Size’, ‘Upper’ and

‘Value’ which convert a string to lower case, return its current size, convert a string

to upper case and return the contents respectively, for both ‘ASCII’ and ‘Unicode’

strings.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 96

Typically, the ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes are useful in the

‘HASH’, ‘QUEUE’, ‘SET’, ‘STACK’ and ‘TREE’ classes to store strings within

these structures.

6.2.3. The FlexibleString Class
The ‘FLEXIBLE_STRING’ class supports flexible sized ‘ASCII’ and ‘Unicode’

strings for all of the Rockall-DB heaps. It is important to have a good understanding

of the ‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the

‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes, as they are closely related. Any

use of the ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes is entirely optional in

Rockall-DB and they primarily exist to simplify the storage of strings in a

‘DATABASE_HEAP.

The ‘FLEXIBLE _STRING’ class requires two template parameters to configure it.

These are the type of Rockall-DB heap and the type of characters in the string. The

‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes are unusual in that they require a

transactional scope (see ‘BeginTransaction’ in section 5.3.3) when used with a

‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ but will not automatically create a

new transaction if one is needed.

The ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes share much of the same

code and data structures. The key difference is that a ‘FIXED_STRING’ is an instance

of an internal template class called ‘ROCKALL::STRING’ whereas a

‘FLEXIBLE_STRING’ is a pointer to an instance of this class. This may seem like a

small change but the performance implications can be very significant as a

‘FIXED_STRING’ typically makes no use of any related heap functionality whereas a

‘FLEXIBLE_STRING’ typically makes considerable use of it.

The functionality of the ‘FIXED_STRING’ and ‘FLEXIBLE_STRING’ classes is

essentially identical and so the ‘FLEXIBLE_STRING’ functionality is described as part

of the ‘FIXED_STRING’ class in ‘Example-06-10’ above.

6.2.4 The Hash Class
The ‘HASH’ class supports variable sized hash tables (i.e. lookup tables) for all of the

Rockall-DB heaps. It is important to have a good understanding of the

‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘HASH’ class, as

they are closely related.

The ‘HASH’ class requires four template parameters to configure it. These are the

type of Rockall-DB heap, the type of ‘LOCK’, the type of the ‘KEY’ and the type of

the ‘VALUE’ to store. The available ‘LOCK’ types are described in section 6.3 below.

The ‘KEY’ can be of any type, class or structure providing it supports the assignment

and the comparison operators. The ‘VALUE’ only needs to support the assignment

operators. A simple program to create a ‘HASH’ table is shown in ‘Example-06-11’

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "Hash.hpp"

Rockall-DB March 2016

97 The Rockall-DB Library | Rockall Software Ltd.

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef HASH<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> HASH_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String = "One";

 HASH_TYPE Hash;

 if (Hash.NewKey(String,1))

 { printf("New value stored in hash\n"); }

 return 0;

 }

Example-06-11

Here we create a ‘HASH’ table with ‘NO_LOCK’ (i.e. see section 6.3 below) that has a

‘KEY’ type of ‘KEY_TYPE’ and a ‘VALUE’ type of ‘int’. We then add a ‘NewKey’

into the ‘HASH’ with a ‘KEY’ value of ‘One’ and a ‘VALUE’ of ‘1’.

The functions supported by the ‘HASH’ class are shown in ‘Table-06-05’ below:

Function Description
DeleteAll Delete all of the keys in a hash table.

DeleteKey Delete a key from a hash table.

FindKey Find a key in a hash table and return its value.

NewKey Create a new key and value pair in a hash table.

Size Compute the number of keys in a hash table.

UpdateKey Update the value associated with a key in a hash table.

Walk Walk all the key and value pairs in a hash table.

Table-06-05

An extended example including all of the functions in ‘Table-06-05’ is shown in

‘Example-06-12’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "Hash.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef HASH<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> HASH_TYPE;

static BOOLEAN WalkFunction(KEY_TYPE & Key,int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 98

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String = "One";

 HASH_TYPE Hash;

 FILE_SIZE Size;

 int Value;

 if

 (

 (Hash.NewKey(String,1,False))

 &&

 (Hash.FindKey(String,& Value))

 &&

 (Hash.Size(& Size))

 &&

 (Hash.UpdateKey(String,2))

 &&

 (Hash.Walk(WalkFunction,((void*) & Value)))

 &&

 (Hash.DeleteKey(String))

 &&

 (Hash.DeleteAll())

)

 { printf("End of example\n"); }

 return 0;

 }

Example-06-12

The call to ‘NewKey’ adds a new ‘KEY’ and ‘VALUE’ pair into the ‘Hash’ table.

The ‘KEY’ in this case will be ‘One’ and the ‘VALUE’ will be ‘1’. A Rockall-DB

‘HASH’ table does not support duplicate ‘KEY’ values and the final parameter

‘False’ causes the call to fail if the new ‘KEY’ is a duplicate. Alternately, if the

final parameter is set to ‘True’ then the new ‘VALUE’ would be used to overwrite

any existing value.

The call to ‘FindKey’ looks up a ‘KEY’ in a ‘Hash’ table and returns the associated

value. The ‘KEY’ in this case will be ‘One’ and the ‘VALUE’ returned will be ‘1’.

The call to ‘Size’ returns the number of ‘KEY’ values in the ‘Hash’ table. The size

of the ‘Hash’ table in this case is ‘1’.

The call to ‘UpdateKey’ looks up a ‘KEY’ in a ‘Hash’ table and updates the

associated value. The ‘KEY’ in this case will be ‘One’ and the ‘VALUE’ will be

updated to ‘2’.

The call to ‘Walk’ leads to the ‘WalkFunction’ being called once for every entry in

the ‘Hash’ table. The ‘WalkFunction’ is called with the each ‘Key’ and

‘Value’ pair along with the second parameter passed to the original ‘Walk’

function call (i.e. ‘& Value’ in this case). The ‘WalkFunction’ returns ‘True’

if it wants to continue to the next ‘Key’ and ‘Value’ pair and ‘False’ otherwise.

Rockall-DB March 2016

99 The Rockall-DB Library | Rockall Software Ltd.

The call to ‘DeleteKey’ deletes a ‘KEY’ from a ‘Hash’ table. The ‘KEY’ in this

case will be ‘One’.

The call to ‘DeleteAll’ deletes all the ‘KEY’ values from a ‘Hash’ table.

All of the functions in the ‘HASH’ class may optionally be called with a pointer to an

‘AUTOMATIC_HEAP_SCOPE’ as the first parameter to improve their performance.

Consequently, ‘Example-06-12’ could be rewritten as shown in ‘Example-06-13’

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "Hash.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef HASH<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> HASH_TYPE;

static BOOLEAN WalkFunction(KEY_TYPE & Key,int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String = "One";

 HASH_TYPE Hash(& Scope);

 FILE_SIZE Size;

 int Value;

 if

 (

 (Hash.NewKey(& Scope,String,1,False))

 &&

 (Hash.FindKey(& Scope,String,& Value))

 &&

 (Hash.Size(& Scope,& Size))

 &&

 (Hash.UpdateKey(& Scope,String,2))

 &&

 (Hash.Walk(& Scope,WalkFunction,((void*) & Value)))

 &&

 (Hash.DeleteKey(& Scope,String))

 &&

 (Hash.DeleteAll(& Scope))

)

 { printf("End of example\n"); }

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 100

 return 0;

 }

Example-06-13

6.2.5 The Queue Class
The ‘QUEUE’ class supports variable sized ‘First in First Out’ tables (i.e. FIFO table)

for all of the Rockall-DB heaps. It is important to have a good understanding of the

‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘QUEUE’ class, as

they are closely related.

The ‘QUEUE’ class requires three template parameters to configure it. These are the

type of Rockall-DB heap, the type of ‘LOCK’ and the type of the ‘VALUE’ to store.

The available ‘LOCK’ types are described in section 6.3 below. The ‘VALUE’ can be

of any type, class or structure providing it supports the assignment operators. A

simple program to create a ‘QUEUE’ table is shown in ‘Example-06-14’ below:

#include "AutomaticHeapScope.hpp"

#include "Queue.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef QUEUE<HEAP_TYPE,NO_LOCK,int> QUEUE_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 QUEUE_TYPE Queue;

 if (Queue.PushValue(1))

 { printf("New value stored in queue\n"); }

 return 0;

 }

Example-06-14

Here we create a ‘QUEUE’ with ‘NO_LOCK’ (i.e. see section 6.3 below) and a ‘VALUE’

type of ‘int’ and then ‘PushValue’ a ‘VALUE’ of ‘1’ into the ‘QUEUE’.

The functions supported by the ‘QUEUE’ class are shown in ‘Table-06-06’ below:

Function Description
DeleteAll Delete all of the values in a queue.

PeakValue Examine the first value in a queue.

PopValue Pop the first value from a queue.

PushValue Push a new value into a queue.

Size Compute the number of values in a queue.

Walk Walk all the values in a queue.

Table-06-06

An extended example including all of the functions in ‘Table-06-06’ is shown in

‘Example-06-15’ below:

#include <stdio.h>

Rockall-DB March 2016

101 The Rockall-DB Library | Rockall Software Ltd.

#include "AutomaticHeapScope.hpp"

#include "Queue.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef QUEUE<HEAP_TYPE,NO_LOCK,int> QUEUE_TYPE;

static BOOLEAN WalkFunction(int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 QUEUE_TYPE Queue;

 FILE_SIZE Size;

 int Value;

 if

 (

 (Queue.PushValue(1))

 &&

 (Queue.PeekValue(& Value))

 &&

 (Queue.Size(& Size))

 &&

 (Queue.Walk(WalkFunction,((void*) & Value)))

 &&

 (Queue.PopValue(& Value))

 &&

 (Queue.DeleteAll())

)

 { printf("End of example\n"); }

 return 0;

 }

Example-06-15

The call to ‘PushValue’ pushes a ‘VALUE’ into the ‘Queue’. The ‘VALUE’ in this

case will be ‘1’.

The call to ‘PeekValue’ returns the first value in the ‘Queue’ without removing it.

The ‘VALUE’ in this case will be ‘1’.

The call to ‘Size’ returns the number of values in the ‘Queue’. The size of the

‘Queue’ in this case will be ‘1’.

The call to ‘Walk’ leads to the ‘WalkFunction’ being called once for every entry in

the ‘Queue’. The ‘WalkFunction’ is called with the each ‘Value’ along with the

second parameter passed to the original ‘Walk’ function call (i.e. ‘& Value’ in this

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 102

case). The ‘WalkFunction’ returns ‘True’ if it wants to continue to the next

‘Value’ and ‘False’ otherwise.

The call to ‘PopValue’ returns the first value in the ‘Queue’ and removes it from the

‘Queue’. The ‘VALUE’ in this case will be ‘1’.

The call to ‘DeleteAll’ deletes all the values in the ‘Queue’.

All of the functions in the ‘QUEUE’ class may optionally be called with a pointer to an

‘AUTOMATIC_HEAP_SCOPE’ as the first parameter to improve their performance.

Consequently, ‘Example-06-15’ could be rewritten as shown in ‘Example-06-16’

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "Queue.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef QUEUE<HEAP_TYPE,NO_LOCK,int> QUEUE_TYPE;

static BOOLEAN WalkFunction(int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 QUEUE_TYPE Queue(& Scope);

 FILE_SIZE Size;

 int Value;

 if

 (

 (Queue.PushValue(& Scope,1))

 &&

 (Queue.PeekValue(& Scope,& Value))

 &&

 (Queue.Size(& Scope,& Size))

 &&

 (Queue.Walk(& Scope,WalkFunction,((void*) & Value)))

 &&

 (Queue.PopValue(& Scope,& Value))

 &&

 (Queue.DeleteAll(& Scope))

)

 { printf("End of example\n"); }

 return 0;

 }

Rockall-DB March 2016

103 The Rockall-DB Library | Rockall Software Ltd.

Example-06-16

6.2.6 The RowSet Class
The ‘ROW_SET’ class supports variable sized sorted collection of ‘FILE_ADDRESS’

values for all of the Rockall-DB heaps. It is important to have a good understanding

of the ‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘ROW_SET’

class, as they are closely related.

The ‘ROW_SET’ class requires two template parameters to configure it. These are the

type of Rockall-DB heap and the type of ‘LOCK’. The available ‘LOCK’ types are

described in section 6.3 below.

The ‘ROW_SET’ class is directly inherited from the ‘SET’ class (see the ‘SET’ class

in section 6.2.7 below) as shown in ‘Example-06-17’ below:

template <class HEAP,class LOCK> class ROW_SET :

 public SET<HEAP,LOCK,FILE_ADDRESS>

Example-06-17

Consequently, all of the ‘ROW_SET’ class functionality is directly derived from the

‘SET’ class (i.e. see the ‘SET’ class for details) except for the ‘Touch’ function.

The ‘Touch’ function simply ensures that every ‘FILE_ADDRESS’ in a ‘ROW_SET’

is asynchronously bought into main memory. An example of the ‘ROW_SET’ class

and the ‘Touch’ function is shown in ‘Example-06-18’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "RowSet.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef ROW_SET<HEAP_TYPE,NO_LOCK> SET_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 SET_TYPE RowSet(& Scope);

 if (RowSet.Touch(& Scope))

 { printf("End of example\n"); }

 return 0;

 }

Example-06-18

The parameter value of ‘& Scope’ in the call to ‘Touch’ in ‘Example-06-18’ is

optional and may be omitted in the same way as in ‘HASH’ and ‘QUEUE’ classes

above. Additionally, in this particular example the ‘RowSet’ is empty and so the call

to ‘Touch’ would have no effect, as there will be no ‘FILE_ADDRESS’ values to be

asynchronously bought into memory.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 104

6.2.7 The Set Class
The ‘SET’ class supports variable sized sorted collections of values for all of the

Rockall-DB heaps. It is important to have a good understanding of the

‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘SET’ class, as they

are closely related.

The ‘SET’ class requires three template parameters to configure it. These are the

type of Rockall-DB heap, the type of ‘LOCK’ and the type of the ‘VALUE’ to store.

The available ‘LOCK’ types are described in section 6.3 below. The ‘VALUE’ can be

of any type, class or structure providing it supports the assignment operators. A

simple program to create a ‘SET’ is shown in ‘Example-06-19’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "Set.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef SET<HEAP_TYPE,NO_LOCK,int> SET_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 SET_TYPE Set;

 if (Set.NewValue(1))

 { printf("New value stored in set\n"); }

 return 0;

 }

Example-06-19

Here we create a ‘SET’ with ‘NO_LOCK’ (i.e. see section 6.3 below) and a ‘VALUE’

type of ‘int’ and then add a ‘NewValue’ of ‘1’ in the ‘SET’.

The functions supported by the ‘SET’ class are shown in ‘Table-06-07’ below:

Function Description
Copy Delete the current set and copy in the contents of another set.

DeleteAll Delete all of the values in a set.

DeleteValue Delete a value in a set.

Difference Keep only the values that are not in both sets.

FindValue Find a value in a set.

Intersect Keep only the values that are in both sets.

Join Keep all the values from both sets.

NewValue Create a new value in a set.

Size Compute the number of values in a set.

Value Supply all the values in a set.

Walk Walk all the values in a set.

Table-06-07

An extended example including all of the functions in ‘Table-06-07’ is shown in

‘Example-06-20’ below:

Rockall-DB March 2016

105 The Rockall-DB Library | Rockall Software Ltd.

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "RockallTypes.hpp"

#include "Set.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef SET<HEAP_TYPE,NO_LOCK,int> SET_TYPE;

static BOOLEAN WalkFunction(int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 SET_TYPE Set1;

 SET_TYPE Set2;

 SET_TYPE Set3;

 FILE_SIZE Size;

 int Values[64];

 if

 (

 (Set1.NewValue(1))

 &&

 (Set2.Copy(& Set1))

 &&

 (Set3.Difference(& Set1))

 &&

 (Set1.FindValue(1))

 &&

 (Set2.Intersect(& Set1))

 &&

 (Set2.Join(& Set1))

 &&

 (Set1.Size(& Size))

 &&

 (Set1.Value(64,& Size,Values))

 &&

 (Set1.Walk(WalkFunction,((void*) & Values[0])))

 &&

 (Set1.DeleteValue(1))

 &&

 (Set1.DeleteAll())

)

 { printf("End of example\n"); }

 return 0;

 }
Example-06-20

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 106

The call to ‘NewValue’ adds a ‘VALUE’ into a set. The set in this case is ‘Set1’ and

the ‘VALUE’ is ‘1’.

The call to ‘Copy’ copies the contents of one set to another. The destination set in

this case is ‘Set2’ and source set is ‘Set1’.

The call to ‘Difference’ computes the difference between two sets. The destination

set in this case is ‘Set3’ and source set is ‘Set1’. We can see that the destination

‘Set3’ will be empty and so in the difference will be all the values found in ‘Set1’.

The call to ‘FindValue’ will return ‘True’ if the value is in a set and ‘False’

otherwise. The set in this case is ‘Set1’ and does contain the value ‘1’, so the

function will return ‘True’.

The call to ‘Intersect’ computes the intersection of two sets. The destination set in

this case is ‘Set2’ and source set is ‘Set1’. We can see that the destination ‘Set2’

is a ‘Copy’ of ‘Set1’ and so all the values from both sets will be in the result set.

The call to ‘Join’ computes the union of two sets. The destination set in this case is

‘Set2’ and source set is ‘Set1’. We can see that the destination ‘Set2’ is a ‘Copy’

of ‘Set1’ and so after removing duplicates all the values from both sets will be in

the result set.

The call to ‘Size’ returns the number of values in the set. The set in this case is

‘Set1’ and its size is ‘1’.

The call to ‘Value’ returns the all of the values in the set. The set in this case is

‘Set1’ and its size is ‘1’. Consequently, as the ‘MaxSize’ of ‘64’ exceeds the

actual size of ‘Set1’ the ‘Size’ parameter will be set to ‘1’ and the contents of

‘Values’ will be set to the associated set values.

The call to ‘Walk’ leads to the ‘WalkFunction’ being called once for every entry in

the set. The ‘WalkFunction’ is called with the each ‘Value’ along with the

second parameter passed to the original ‘Walk’ function call (i.e. ‘& Values[0]’

in this case). The ‘WalkFunction’ returns ‘True’ if it wants to continue to the

next ‘Value’ and ‘False’ otherwise.

The call to ‘DeleteValue’ deletes a value in a set. The set in this case is ‘Set1’ and

the value is ‘1’.

The call to ‘DeleteAll’ deletes all the values in a set.

All of the functions in the ‘SET’ class may optionally be called with a pointer to an

‘AUTOMATIC_HEAP_SCOPE’ as the first parameter to improve their performance.

Consequently, ‘Example-06-20’ could be rewritten as shown in ‘Example-06-21’

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

Rockall-DB March 2016

107 The Rockall-DB Library | Rockall Software Ltd.

#include "RockallTypes.hpp"

#include "Set.hpp"

#include "SingleThreadedHeap.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef SET<HEAP_TYPE,NO_LOCK,int> SET_TYPE;

static BOOLEAN WalkFunction(int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 SET_TYPE Set1(& Scope);

 SET_TYPE Set2(& Scope);

 SET_TYPE Set3(& Scope);

 FILE_SIZE Size;

 int Values[64];

 if

 (

 (Set1.NewValue(& Scope,1))

 &&

 (Set2.Copy(& Scope,& Set1))

 &&

 (Set3.Difference(& Scope,& Set1))

 &&

 (Set1.FindValue(& Scope,1))

 &&

 (Set2.Intersect(& Scope,& Set1))

 &&

 (Set2.Join(& Scope,& Set1))

 &&

 (Set1.Size(& Scope,& Size))

 &&

 (Set1.Value(& Scope,64,& Size,Values))

 &&

 (Set1.Walk(& Scope,WalkFunction,((void*) & Values[0])))

 &&

 (Set1.DeleteValue(& Scope,1))

 &&

 (Set1.DeleteAll(& Scope))

)

 { printf("End of example\n"); }

 return 0;

 }

Example-06-21

6.2.8 The Stack Class
The ‘STACK’ class supports variable sized ‘Last in First Out’ tables (i.e. LIFO table)

for all of the Rockall-DB heaps. It is important to have a good understanding of the

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 108

‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘STACK’ class, as

they are closely related.

The ‘STACK’ class requires three template parameters to configure it. These are the

type of Rockall-DB heap, the type of ‘LOCK’ and the type of the ‘VALUE’ to store.

The available ‘LOCK’ types are described in section 6.3 below. The ‘VALUE’ can be

of any type, class or structure providing it supports the assignment operators.

The ‘QUEUE’ and ‘STACK’ classes support the same functional interfaces and

operate in similar ways, except for being ‘QUEUE’ and ‘STACK’ structures

respectively. Consequently, see the ‘QUEUE’ class in section 6.2.5 for further details

and related examples for the ‘STACK’ class.

6.2.9 The Tree Class
The ‘TREE’ class supports configurable, variable sized, multi-way trees (i.e. an

index) for all of the Rockall-DB heaps. It is important to have a good understanding

of the ‘AUTOMATIC_HEAP_SCOPE’ class before trying to understand the ‘TREE’ class,

as they are closely related.

The ‘TREE’ class requires four mandatory template parameters to configure it and

also supports an additional two optional template parameters. The mandatory

template parameters are the type of Rockall-DB heap, the type of ‘LOCK’, the type of

the ‘KEY’ and the type of the ‘VALUE’ to store. The available ‘LOCK’ types are

described in section 6.3 below. The ‘KEY’ can be of any type, class or structure

providing it supports the assignment and the comparison operators. The ‘VALUE’

only needs to support the assignment operators.

The optional template parameters are the number of ‘VALUE’ nodes in a twig (i.e.

leaves on a twig) and the number of stems in a branch (i.e. twigs on a branch). The

value of these template parameters must be in the range 16 to 16,384 and control the

overall shape of the ‘TREE’. A smaller value will tend to save space and reduce

contention while increasing the number of levels in the ‘TREE’. A larger value will

tend to consume more space and increase contention but reduce the number of levels

in the ‘TREE’ (i.e. a tree with 268,435,456 entries will create 7 levels of indexes with

the minimum values of 16 whereas with the maximum values of 16,384 it will only

create only 1 level of index). A simple program to create a ‘TREE’ table is shown in

‘Example-06-22’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "SingleThreadedHeap.hpp"

#include "Tree.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef TREE<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> TREE_TYPE;

int main(void)

 {

 HEAP_TYPE Heap;

Rockall-DB March 2016

109 The Rockall-DB Library | Rockall Software Ltd.

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String = "One";

 TREE_TYPE Tree;

 if (Tree.NewKey(String,1))

 { printf("New value stored in tree\n"); }

 return 0;

 }

Example-06-22

Here we create a ‘TREE’ with ‘NO_LOCK’ (i.e. see section 6.3 below) that has a

‘KEY’ type of ‘KEY_TYPE’ and a ‘VALUE’ type of ‘int’. We then add a ‘NewKey’

into the ‘TREE’ with a ‘KEY’ value of ‘One’ and a ‘VALUE’ of ‘1’.

The functions supported by the ‘TREE’ class are shown in ‘Table-06-08’ below:

Function Description
DeleteAll Delete all of the keys in a tree.

DeleteKey Delete a key from a tree.

FindKey Find a key in a tree and return its value.

FindKeys Find a range of key and value pairs in a tree.

NewKey Create a new key and value pair in a tree.

Size Compute the number of keys in a tree.

UpdateKey Update the value associated with a key in a tree.

Walk Walk all the key and value pairs in a tree.

Table-06-08

An extended example including all of the functions in ‘Table-06-08’ is shown in

‘Example-06-23’ below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

#include "Tree.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef TREE<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> TREE_TYPE;

static BOOLEAN WalkFunction(KEY_TYPE & Key,int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String1 = "One";

 KEY_TYPE String2 = "A";

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 110

 KEY_TYPE String3 = "Z";

 KEY_TYPE String4;

 TREE_TYPE Tree;

 FILE_SIZE Size;

 int Value;

 if

 (

 (Tree.NewKey(String1,1,False))

 &&

 (Tree.FindKey(String1,& Value))

 &&

 (Tree.FindKeys(String2,String3,1,& Size,& String4,& Value))

 &&

 (Tree.Size(& Size))

 &&

 (Tree.UpdateKey(String1,2))

 &&

 (Tree.Walk(WalkFunction,((void*) & Value)))

 &&

 (Tree.DeleteKey(String1))

 &&

 (Tree.DeleteAll())

)

 { printf("End of example\n"); }

 return 0;

 }

Example-06-23

The call to ‘NewKey’ adds a new ‘KEY’ and ‘VALUE’ pair into the ‘Tree’. The

‘KEY’ in this case will be ‘One’ and the ‘VALUE’ will be ‘1’. A Rockall-DB

‘TREE’ does not support duplicate ‘KEY’ values and the final parameter ‘False’

causes the call to fail if the new ‘KEY’ is a duplicate. Alternately, if the final

parameter is set to ‘True’ then the new ‘VALUE’ would be used to overwrite any

existing value.

The call to ‘FindKey’ looks up a ‘KEY’ in a ‘Tree’ and returns the associated

value. The ‘KEY’ in this case will be ‘One’ and the ‘VALUE’ returned will be ‘1’.

The call to ‘FindKeys’ returns a range of keys and associated values in a ‘Tree’. In

this case, the lower bound would be ‘A’ and the higher bound would be ‘Z’. The

maximum number of values returned will be ‘1’. The number of values returned will

be supplied in ‘Size’ and the actual keys and values matched will be returned in

‘String4’ and ‘Value’. If the maximum number of values was greater than ‘1’

then ‘String4’ and ‘Value’ would need to be arrays of the same size and the

results would be supplied in sorted order.

The call to ‘Size’ returns the number of ‘KEY’ values in a ‘Tree’. The size of the

‘Tree’ in this case is ‘1’.

The call to ‘UpdateKey’ looks up a ‘KEY’ in a ‘Tree’ and updates the associated

value. The ‘KEY’ in this case will be ‘One’ and the updated ‘VALUE’ will be ‘2’.

Rockall-DB March 2016

111 The Rockall-DB Library | Rockall Software Ltd.

The call to ‘Walk’ leads to the ‘WalkFunction’ being called once for every entry in

the ‘Tree’. The ‘WalkFunction’ is called with the each ‘Key’ and ‘Value’

pair in sorted order along with the second parameter passed to the original ‘Walk’

function call (i.e. ‘& Value’ in this case). The ‘WalkFunction’ returns ‘True’

if it wants to continue to the next ‘Key’ and ‘Value’ pair and ‘False’ otherwise.

The call to ‘DeleteKey’ deletes a ‘KEY’ from a ‘Tree’. The ‘KEY’ in this case

would be ‘One’.

The call to ‘DeleteAll’ deletes all the ‘KEY’ values from a ‘Tree’.

All of the functions in the ‘TREE’ class may optionally be called with a pointer to an

‘AUTOMATIC_HEAP_SCOPE’ as the first parameter to improve their performance.

Consequently, ‘Example-06-23’ could be rewritten as shown in ‘Example-06-24’

below:

#include <stdio.h>

#include "AutomaticHeapScope.hpp"

#include "FixedString.hpp"

#include "RockallTypes.hpp"

#include "SingleThreadedHeap.hpp"

#include "Tree.hpp"

typedef SINGLE_THREADED_HEAP HEAP_TYPE;

typedef FIXED_STRING<HEAP_TYPE,char,64> KEY_TYPE;

typedef TREE<HEAP_TYPE,NO_LOCK,KEY_TYPE,int> TREE_TYPE;

static BOOLEAN WalkFunction(KEY_TYPE & Key,int & Value,void *User)

 {

 int *UserValue = ((int*) User);

 printf("Value: %d, User Value: %d\n",Value,(*UserValue));

 return True;

 }

int main(void)

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 KEY_TYPE String1 = "One";

 KEY_TYPE String2 = "A";

 KEY_TYPE String3 = "Z";

 KEY_TYPE String4;

 TREE_TYPE Tree(& Scope);

 FILE_SIZE Size;

 int Value;

 if

 (

 (Tree.NewKey(& Scope,String1,1,False))

 &&

 (Tree.FindKey(& Scope,String1,& Value))

 &&

 (Tree.FindKeys(& Scope,String2,String3,1,& Size,& String4))

 &&

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 112

 (Tree.Size(& Scope,& Size))

 &&

 (Tree.UpdateKey(& Scope,String1,2))

 &&

 (Tree.Walk(& Scope,WalkFunction,((void*) & Value)))

 &&

 (Tree.DeleteKey(& Scope,String1))

 &&

 (Tree.DeleteAll(& Scope))

)

 { printf("End of example\n"); }

 return 0;

 }
Example-06-24

6.3. The Rockall-DB Library Lock Classes
A significant portion of the Rockall-DB library outlined in section 6.2 above requires

a ‘LOCK’ to be supplied as a template parameter. A number of pre-built ‘LOCK’ types

are available in Rockall-DB which may be used in these classes or independently. All

of the supported ‘LOCK’ types are listed in ‘Table-06-09’ below:

File Name Sections Description
AutomaticLockScope.hpp 6.3.1. A class to automate lock management.

FileLock.hpp 6.3.2. A lock suitable for file or memory structures.

MemoryLock.hpp 6.3.3. A lock suitable for memory structures.

NoLock.hpp 6.3.4. A class to optimize away locking code.

TransactionLock.hpp 6.3.5. A lock related to transactions.

Table-06-09

All of the Rockall-DB library locks support the same interface, even though their

implementations often vary significantly. Consequently, any Rockall-DB ‘LOCK’ can

trivially be substituted for a different ‘LOCK’ type. The overall structure of the

interface is shown in ‘Example-06-25’ below:

class FILE_LOCK

 {

 public:

 FILE_LOCK(VOID);

 BOOLEAN ClaimExclusiveLock(BOOLEAN Wait = True);

 BOOLEAN ClaimSharedLock(BOOLEAN Wait = True);

 VOID ReleaseExclusiveLock(VOID);

 VOID ReleaseSharedLock(VOID);

 ~FILE_LOCK(VOID);

 };

Example-06-25

A call to ‘ClaimExclusiveLock’ with ‘Wait’ set to ‘True’ will not return from

the call until the current thread is the sole owner of the associated lock and will

always return the value ‘True’. If ‘Wait’ set to ‘False’ the call will return

Rockall-DB March 2016

113 The Rockall-DB Library | Rockall Software Ltd.

immediately and the returned value will be ‘True’ if the lock was claimed or

‘False’ otherwise.

A call to ‘ClaimSharedLock’ with ‘Wait’ set to ‘True’ will not return from the

call until the current thread is a shared owner of the associated lock and will always

return the value ‘True’. If ‘Wait’ set to ‘False’ the call will return immediately

and the returned value will be ‘True’ if the shared lock was claimed or ‘False’

otherwise.

A call to ‘ReleaseExclusiveLock’ or ‘ReleaseSharedLock’ are the converse of

a call to ‘ClaimExclusiveLock’ or ‘ClaimSharedLock’ respectively.

The Rockall-DB library does not support mismatching or recursive lock calls.

Consequently, any attempt to call both ‘ClaimExclusiveLock’ and

‘ClaimSharedLock’ or to make multiple calls to ‘ClaimExclusiveLock’ without

prior matching calls to ‘ReleaseExclusiveLock’ or ‘ReleaseSharedLock’

respectively will result in deadlock. Any attempt to call ‘ReleaseExclusiveLock’

or ‘ReleaseSharedLock’ without a prior matching call to ‘ClaimExclusiveLock’

or ‘ClaimSharedLock’ respectively will result in a software failure.

There is no requirement to use the Rockall-DB library locks classes if suitable

alternatives are available (i.e. alternatives that support the interface outlined above).

6.3.1. The AutomaticLockScope Class
The ‘AUTOMATIC_LOCK_SCOPE’ class automatically claims a Rockall-DB ‘LOCK’

when a block of code is entered and automatically releases it when the block is exited.

There is no requirement to use ‘AUTOMATIC_LOCK_SCOPE’ class in Rockall-DB and it

is provided purely for convenience. An example of ‘AUTOMATIC_LOCK_SCOPE’ class

is shown in ‘Example-06-26’ below:

#include <stdio.h>

#include "AutomaticLockScope.hpp"

#include "FileLock.hpp"

int main(void)

 {

 FILE_LOCK Lock;

 // No lock owned.

 Lock.ClaimExclusiveLock();

 // Exclusive lock owned.

 Lock.ReleaseExclusiveLock();

 // No lock owned.

 {

 AUTOMATIC_EXCLUSIVE_LOCK_SCOPE<FILE_LOCK> ExclusiveLock(& Lock);

 // Exclusive lock owned.

 }

 // No lock owned.

 {

 AUTOMATIC_EXCLUSIVE_LOCK_SCOPE<FILE_LOCK> ExclusiveLock(& Lock);

 // Exclusive lock owned.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 114

 ExclusiveLock.Release();

 // No lock owned.

 ExclusiveLock.Reclaim();

 // Exclusive lock owned.

 }

 // No lock owned.

 Lock.ClaimSharedLock();

 // Shared lock owned.

 Lock.ReleaseSharedLock();

 // No lock owned.

 {

 AUTOMATIC_SHAREABLE_LOCK_SCOPE<FILE_LOCK> SharedLock(& Lock);

 // Shared lock owned.

 }

 // No lock owned.

 return 0;

 }

Example-06-26

We see at the beginning of ‘Example-06-26’ a ‘FILE_LOCK’ called ‘Lock’. We then

see that this ‘Lock’ can be manually claimed by calls such as

‘Lock.ClaimExclusiveLock()’ and ‘Lock.ClaimSharedLock()’ and manually

released by related calls such as ‘Lock.ReleaseExclusiveLock()’ and

‘Lock.ReleaseSharedLock()’ respectively.

We also see how the ‘AUTOMATIC_EXCLUSIVE_LOCK_SCOPE’ class and the

‘AUTOMATIC_SHAREABLE_LOCK_SCOPE’ class can be used to automate these

exclusive lock and shared lock calls within a block respectively.

Finally, we see that the ‘Release’ function can optionally be used to release lock

early and the ‘Reclaim’ function can be used to optionally reclaim the lock again

(i.e. if it was released earlier).

6.3.2. The FileLock Class
A ‘FILE_LOCK’ is suitable for all Rockall-DB heaps and Rockall-DB library classes.

The general structure and patterns of use of a ‘FILE_LOCK’ are outlined in sections

6.3 and 6.3.1 above.

A ‘FILE_LOCK’ consists of a single byte of memory which remains unchanged.

However, the address of this byte of memory is used to find an associated

‘MEMORY_LOCK’ (see section 6.3.3 below) elsewhere in the process space which

implements the actual locking calls. A ‘FILE_LOCK’ is the lowest performing of the

Rockall-DB library lock classes but is important as only ‘FILE_LOCK’ and

‘NO_LOCK’ may be used in conjunction with a ‘DATABASE_HEAP’.

6.3.3. The MemoryLock Class
A ‘MEMORY_LOCK’ is suitable for all Rockall-DB heaps and Rockall-DB library

classes except when they are used in connection with a ‘DATABASE_HEAP’. The

general structure and patterns of use of a ‘MEMORY_LOCK’ are outlined in sections 6.3

and 6.3.1 above.

Rockall-DB March 2016

115 The Rockall-DB Library | Rockall Software Ltd.

A ‘MEMORY_LOCK’ is a high performance spinlock that is optimized for multi-

threaded applications. Typically, a ‘MEMORY_LOCK’ should be used in preference to a

‘FILE_LOCK’ for performance reasons, except for where an object is stored in a file

(i.e. a ‘DATABASE_HEAP’). If a ‘MEMORY_LOCK’ is stored in a file (i.e. a

‘DATABASE_HEAP’) the code is almost guaranteed to fail when the object is reloaded

into main memory in a new process.

6.3.4. The NoLock Class
The ‘NO_LOCK’ class is suitable for all Rockall-DB heaps and Rockall-DB library

classes. The general structure and patterns of use of a ‘NO_LOCK’ are outlined in

sections 6.3 and 6.3.1 above.

An instance of ‘NO_LOCK’ simply helps the C++ compiler to optimize away all the

related locking code. The structure of The ‘NO_LOCK’ class is shown in ‘Example-

06-27’ below:

class NO_LOCK

 {

 public:

 NO_LOCK(VOID)

 { /* void */ }

 BOOLEAN ClaimExclusiveLock(BOOLEAN Wait = True)

 { return True; }

 BOOLEAN ClaimSharedLock(BOOLEAN Wait = True)

 { return True; }

 VOID ReleaseExclusiveLock(VOID)

 { /* void */ }

 VOID ReleaseSharedLock(VOID)

 { /* void */ }

 ~NO_LOCK(VOID)

 { /* void */ }

 };
Example-06-27

We can see from ‘Example-06-27’ that the ‘NO_LOCK’ class has no functional code.

Therefore, even the most intellectually challenged C++ compiler should be able to

easily optimize it away entirely. Consequently, using ‘NO_LOCK’ with the Rockall-

DB library classes automatically removes all of the related locking code.

6.3.5. The TransactionLock Class
A ‘TRANSACTION_LOCK’ is a variant of ‘MEMORY_LOCK’. A ‘TRANSACTION_LOCK’

does nothing when used in conjunction with ‘SINGLE_THREADED_HEAP’ or

‘MULTI_THREADED_HEAP’ (i.e. it’s functionally the same as ‘NO_LOCK’). However, a

‘TRANSACTION_LOCK’ behaves like a normal ‘MEMORY_LOCK’ when used in

conjunction with ‘BeginTransaction()’ and ‘JoinTransaction()’ on a

‘TRANSACTIONAL_HEAP’ or ‘DATABASE_HEAP’ (i.e. see chapter 5 above). A

‘TRANSACTION_LOCK’ is normally used in situations where there are multiple threads

working in parallel on a single transaction.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 116

6.4. The Rockall-DB Library Support Classes
A number of additional miscellaneous classes are also available in the Rockall-DB

library. These classes support functionality that may be of use in some situations. All

of these Rockall-DB library support classes are show in ‘Table-06-10’ below:

File Name Sections Description
AsynchronousCallbacks.hpp 6.4.1 A class to asynchronously call functions.

AutomaticTransactionScope.hpp 6.4.2 A class to automatically terminate transactions.

AutomaticViewScope.hpp 6.4.3 A class to automatically terminate views.

PlacementNew.hpp 6.4.4 A class to manually call a constructor or destructor.

RockallDelete.hpp 6.4.5 A Rockall replacement for the ‘delete’ operator.

RockallNew.hpp 6.4.6 A Rockall replacement for the ‘new’ operator.

RockallTypes.hpp 6.4.7 A collection of standard Rockall types.

VirtualDestructor.hpp 6.4.8 A class to aid the automatic calling of destructors.

Table-06-10

All of the functions listed in ‘Table-06-10’ are described in detail in the following

sections in the order they appear the table above.

6.4.1. The AsynchronousCallbacks Class
The ‘ASYNCHRONOUS_CALLBACKS’ class simplifies the management of threads within

Rockall-DB. A simple call can be made to asynchronously call a user function which

will be made as soon suitable resources are available.

The ‘ASYNCHRONOUS_CALLBACKS’ class requires a template parameter to configure it.

This template parameter is the type of value to be passed to the asynchronous

function. Any supplied value is copied and the copied value passed as the first

parameter to the callback function. The callback function may execute for any

amount of time and when the callback function ends the associated thread returns to

the pool of available threads. An example of the ‘ASYNCHRONOUS_CALLBACKS’ class

is shown in ‘Example-06-28’ below:

#include <stdio.h>

#include "AsynchronousCallbacks.hpp"

#include "DatabaseHeap.hpp"

#include "RockallTypes.hpp"

void AsynchronousFunction(int *Value)

 { printf("Asynchronous Function value is %d\n",(*Value)); }

int main(void)

 {

 DATABASE_HEAP Heap;

 ASYNCHRONOUS_CALLBACKS<int> Callbacks;

 int CPUs = ((int) Callbacks.NumberOfCPUs());

 int Count;

 for (Count=0;Count < CPUs;Count ++)

 { Callbacks.Schedule(AsynchronousFunction,Count); }

 Callbacks.Sleep(1);

 Callbacks.WaitAll();

Rockall-DB March 2016

117 The Rockall-DB Library | Rockall Software Ltd.

 return 0;

 }

Example-06-28

The ‘ASYNCHRONOUS_CALLBACKS’ template in this case is ‘int’ and so all of the

calls to ‘AsynchronousFunction()’ for this instance of the class will be passed a

pointer to an ‘int’ as their first parameter. The ‘ASYNCHRONOUS_CALLBACKS’

template can support any structure or type as long as it can be copied with
‘memcpy()’.

The ‘NumberOfCPUs()’ function returns the current number of CPUs. The

‘Schedule()’ function in this case schedules an asynchronous callback to

‘AsynchronousFunction()’ and arranges for a copy of the value of ‘Count’ to be

passed to it. The call to ‘AsynchronousFunction()’ can occur at any point in the

future. The precise ordering and the timing of the calls are unpredictable. The

‘Sleep()’ function allows the current thread to sleep for a number of milliseconds.

Finally, the ‘WaitAll()’ function will wait until the callbacks scheduled by

‘Schedule()’ have completed for an instance of the ‘ASYNCHRONOUS_CALLBACKS’

class.

6.4.2. The AutomaticTransactionScope Class
The ‘AUTOMATIC_TRANSACTION_SCOPE’ class is mainly intended for internal use

within the Rockall-DB library. Its function is to ensure that any call to

‘BeginTransaction’ is matched by a call to ‘EndTransaction’ within the scope of

a block.

The ‘AUTOMATIC_TRANSACTION_SCOPE’ class requires a template parameter to

configure it. This template parameter is the type of Rockall-DB heap being used (i.e.

in this case a ‘DATABASE_HEAP’).

The ‘AUTOMATIC_TRANSACTION_SCOPE’ class partially duplicates the more advanced

functionality available in the ‘AUTOMATIC_HEAP_SCOPE’ class and is only useful in

situations where only this limited functionality is helpful. An example of the

‘AUTOMATIC_TRANSACTION_SCOPE’ class is shown in ‘Example-06-29’ below:

#include "AutomaticHeapScope.hpp"

#include "AutomaticTransactionScope.hpp"

#include "DatabaseHeap.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 FILE_ADDRESS Address;

 int Result = 0;

 int *Data;

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 118

 // No transaction.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Scope);

 if (Transaction.BeginTransaction())

 {

 // Active transaction.

 if (! ROCKALL_NEW<int>::New(& Scope,& Address,& Data))

 { Result = 1; }

 }

 }

 // No transaction.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Heap);

 if (Transaction.BeginTransaction())

 {

 // Active transaction.

 if (! ROCKALL_DELETE<int>::Delete(& Heap,Address))

 { Result = 1; }

 Transaction.EndTransaction();

 // No transaction.

 }

 }

 Scope.CloseFile();

 }

 return Result;

 }

Example-06-29

The call to ‘CreateFile’ creates a new ‘DATABASE_HEAP’ file. The constructor to

the initial instance of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class is passed the

parameter ‘Scope’ which provides access to the ‘Heap’. Later, ‘Scope’ is also

passed as a parameter to the ‘New’ function also to provide access to ‘Heap’.

The constructor to the later instance of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class

is passed the parameter ‘Heap’ directly. Later, ‘Heap’ is also passed as a parameter

to the ‘Delete’ function. These two instances demonstrate that ‘Scope’ and

‘Heap’ can often be used interchangeably in various situations.

In the initial block of code a new transaction is created by a call to

‘BeginTransaction’ which terminates when ‘Transaction’ goes out of scope, as

there is no call to ‘EndTransaction’.

In the latter block of code another new transaction is created by a call to

‘BeginTransaction’ but in this case the transaction is terminated early by a call to

‘EndTransaction’. A transaction may always be terminated early and in this case

there will be no further call to ‘EndTransaction’ when ‘Transaction’ goes out of

scope.

Rockall-DB March 2016

119 The Rockall-DB Library | Rockall Software Ltd.

The main advantage of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class relates to its

simplicity and performance, which is why it is sometimes used in conjunction with

the with ‘AUTOMATIC_HEAP_SCOPE’ class in the Rockall-DB library.

6.4.3. The AutomaticViewScope Class
The ‘AUTOMATIC_VIEW_SCOPE’ class is mainly intended for internal use within the

Rockall-DB library. Its function is to ensure that any call to ‘ExclusiveView’ or

‘View’ is matched by a call to ‘EndExclusiveView’ or ‘EndView’ respectively

within the scope of a block.

The ‘AUTOMATIC_VIEW_SCOPE’ class requires a template parameter to configure it.

This template parameter is the type of Rockall-DB heap being used (i.e. in this case a

‘DATABASE_HEAP’).

An example of the ‘AUTOMATIC_VIEW_SCOPE’ class is shown in ‘Example-06-30’

below:

#include "AutomaticHeapScope.hpp"

#include "AutomaticTransactionScope.hpp"

#include "AutomaticViewScope.hpp"

#include "DatabaseHeap.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 FILE_ADDRESS Address;

 int Result = 0;

 int *Data;

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

 // No transaction and no view.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Scope);

 if (Transaction.BeginTransaction())

 {

 // Active transaction but no view.

 if (! ROCKALL_NEW<int>::New(& Scope,& Address,& Data))

 { Result = 1; }

 }

 }

 // No transaction and no view.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Scope);

 if (Transaction.BeginTransaction())

 {

 // Active transaction but no view.

 {

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 120

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> View(& Scope);

 if (View.ExclusiveView(Address,((void**) & Data)))

 {

 // Active transaction and exclusive view.

 }

 }

 // Active transaction but no view.

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> View(& Scope);

 if (View.View(Address,((void**) & Data)))

 {

 // Active transaction and shared view.

 }

 }

 // Active transaction but no view.

 {

 AUTOMATIC_VIEW_SCOPE<HEAP_TYPE> View(& Heap);

 if (View.ExclusiveView(Address,((void**) & Data)))

 {

 // Active transaction and exclusive view.

 View.Release();

 // Active transaction but no view.

 }

 }

 }

 // No transaction and no view.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Heap);

 if (Transaction.BeginTransaction())

 {

 // Active transaction but no view.

 if (! ROCKALL_DELETE<int>::Delete(& Heap,Address))

 { Result = 1; }

 Transaction.EndTransaction();

 // No transaction and no view.

 }

 }

 }

 Scope.CloseFile();

 }

 return Result;

 }
Example-06-30

The call to ‘CreateFile’ creates a new ‘DATABASE_HEAP’ file. The constructor to

the initial instance of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class is passed the

parameter ‘Scope’ which provides access to the ‘Heap’. Later, ‘Scope’ is also

passed as a parameter to the ‘New’ function to also provide access to ‘Heap’.

Rockall-DB March 2016

121 The Rockall-DB Library | Rockall Software Ltd.

The constructor to the last instance of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class

is passed the parameter ‘Heap’ directly. Later, ‘Heap’ is also passed as a parameter

to the ‘Delete’ function. These two instances demonstrate that ‘Scope’ and

‘Heap’ can often be used interchangeably in various situations.

In the central block of code a new transaction is created by a call to

‘BeginTransaction’ which terminates when ‘Transaction’ goes out of scope, as

there is no call to ‘EndTransaction’.

In the central block of code also contains three blocks of code that create views. The

constructors for the first two instances of the ‘AUTOMATIC_VIEW_SCOPE’ class are

passed the parameter ‘Scope’ which allows them to access ‘Heap’. The final

instance of the ‘AUTOMATIC_VIEW_SCOPE’ class is passed the parameter ‘Heap’

directly. These three instances again demonstrate that ‘Scope’ and ‘Heap’ can

often be used interchangeably in various situations.

The initial instance of the ‘AUTOMATIC_VIEW_SCOPE’ class creates an

‘ExclusiveView’ with which terminates when ‘View’ goes out of scope, as there is

no call to ‘Release’.

The next instance of the ‘AUTOMATIC_VIEW_SCOPE’ class creates a shared ‘View’

with which terminates when ‘View’ goes out of scope, as there is no call to

‘Release’.

The final instance of the ‘AUTOMATIC_VIEW_SCOPE’ class creates an

‘ExclusiveView’ but in this case the view is terminated early by a call to

‘Release’. A view may always be terminated early and in this case there will be no

further call to ‘EndExclusiveView’ when ‘View’ goes out of scope.

6.4.4. The LinkedList Class
The ‘LINKED_LIST’ class supports in-memory linked lists and works with all

Rockall-DB heaps except for ‘DATABASE_HEAP’. All of the elements are doubly

linked so new elements can easily be added or removed anywhere in a list. An

example of the ‘LINKED_LIST’ class is shown in ‘Example-06-31’ below:

#include <stdio.h>

#include "LinkedList.hpp"

#include "RockallTypes.hpp"

//

// A linked list element.

//

class ELEMENT : public LINKED_LIST<ELEMENT>

 {

 public:

 int Value;

 ELEMENT(int NewValue = 0)

 { Value = NewValue; }

 ~ELEMENT(void)

 { Value = 0; }

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 122

 };

//

// A linked list header.

//

typedef LINKED_LIST<ELEMENT> HEADER;

int main(void)

 {

 ELEMENT Element[4] = { 0,1,2,3 };

 ELEMENT *Current;

 HEADER Header;

 //

 // Insert 'Element[0]' at the head of the list

 // and 'Element[3]' at the end of the list.

 //

 Element[0].InsertFirst(& Header);

 Element[3].InsertLast(& Header);

 //

 // Insert 'Element[1]' after 'Element[0]' then

 // insert 'Element[2]' before ' Element[3]' in

 // the list.

 //

 Element[1].InsertAfter(& Header,& Element[0]);

 Element[2].InsertBefore(& Header,& Element[3]);

 //

 // We iterate the list in 'Forwards()' order.

 //

 for

 (

 Current = Header.First();

 ! Current -> End();

 Current = Current -> Forwards()

)

 {

 //

 // We visit each list 'ELEMENT' in 'Forwards()'

 // order.

 //

 printf("%d\n",Current -> Value);

 }

 //

 // We iterate the list in 'Backwards()' order.

 //

 for

 (

 Current = Header.Last();

 ! Current -> End();

 Current = Current -> Backwards()

)

 {

 //

 // We visit each list 'ELEMENT' in 'Backwards()'

 // order.

 //

Rockall-DB March 2016

123 The Rockall-DB Library | Rockall Software Ltd.

 printf("%d\n",Current -> Value);

 }

 //

 // We unlink all the elements from the end of

 // the list until it is empty.

 //

 for

 (

 Current = Header.Last();

 ! Current -> End();

 Current = Header.Last()

)

 { Current -> Unlink(& Header); }

 return 0;

 }

Example-06-31

A call to ‘InsertFirst’ inserts a ‘LINKED_LIST’ element at the start of a list

whereas a call to ‘InsertLast’ inserts an element at the end of a list. These calls

must be supplied with a pointer to the list ‘Header’ as either the head or tail of the list

is guaranteed to change.

A call to ‘InsertAfter’ inserts a new ‘LINKED_LIST’ element after an existing

element whereas a call to ‘InsertBefore’ inserts a new element before an existing

element. These calls must be supplied with a pointer to the list ‘Header’ just in case

the head or tail of the list needs to change along with a pointer to an existing element

in the list.

The first loop walks along the list in from head to tail printing each value as it goes.

The output from each execution of this loop will be “0”, “1”, “2” and “3”

respectively.

The next loop walks along the list in from tail to head printing each value as it goes.

The output from each execution of this loop will be “3”, “2”, “1” and “0”

respectively.

Finally, a call to ‘Unlink’ removes an existing element from the list. This call must

be supplied a pointer to the list ‘Header’ just in case the head or tail of the list needs

to change. The final loop unlinks the last element on each cycle until the list is

empty.

6.4.5. The PlacementNew Header
The ‘PlacementNew.hpp’ header contains a number of macros that allow class

constructors and destructors to be called manually. Typically, the ‘ROCKALL_NEW’

and ‘ROCKALL_DELETE’ classes would be used instead of this functionality, as they

automatically call the related constructors and destructors (i.e. see sections 6.4.3 and

6.4.4 below). Nonetheless, the ‘PlacementNew.hpp’ header is available for general

use if needed. An example of the ‘PlacementNew.hpp’ header is shown in

‘Example-06-32’ below:

#include "AutomaticHeapScope.hpp"

#include "AutomaticTransactionScope.hpp"

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 124

#include "DatabaseHeap.hpp"

#include "PlacementNew.hpp"

#include "RockallTypes.hpp"

typedef DATABASE_HEAP HEAP_TYPE;

typedef struct { int Value; } DATA;

int main(int Count,char *Argument[])

 {

 HEAP_TYPE Heap;

 AUTOMATIC_HEAP_SCOPE<HEAP_TYPE> Scope(& Heap);

 FILE_ADDRESS Address;

 DATA *Data;

 if ((Count == 2) && (Scope.CreateFile(Argument[1])))

 {

 // No transaction.

 {

 AUTOMATIC_TRANSACTION_SCOPE<HEAP_TYPE> Transaction(& Scope);

 if (Transaction.BeginTransaction())

 {

 // Active transaction.

 if (Scope.New(& Address,((void**) & Data),sizeof(DATA)))

 {

 PLACEMENT_NEW(Data,DATA);

 // Active allocation ready for use.

 PLACEMENT_DELETE(Data,DATA);

 Scope.Delete(Address);

 }

 }

 }

 // No transaction.

 Scope.CloseFile();

 }

 return 0;

 }

Example-06-32

The call to ‘CreateFile’ creates a new ‘DATABASE_HEAP’ file. The constructor to

the initial instance of the ‘AUTOMATIC_TRANSACTION_SCOPE’ class is passed the

parameter ‘Scope’ which is used to access ‘Heap’.

In the main block of code a new transaction is created by a call to

‘BeginTransaction’ which terminates when ‘Transaction’ goes out of scope, as

there is no call to ‘EndTransaction’.

A call is made to the native Rockall-DB ‘New’ (i.e. which does not call the related

constructor) to make a new memory allocation followed by a call to

‘PLACEMENT_NEW’ to call the related constructor.

Later, a call to ‘PLACEMENT_DELETE’ is made to call the related destructor. Next, a

call is made to the native Rockall-DB ‘Delete’ (i.e. which does not call the related

destructor) to free the memory allocation.

Rockall-DB March 2016

125 The Rockall-DB Library | Rockall Software Ltd.

6.4.6. The RockallDelete Class
The ‘ROCKALL_DELETE’ class is the Rockall-DB alterative to the C++ ‘delete’

operator.

The ‘ROCKALL_DELETE’ class requires a template parameter to configure it. This

template parameter is the type of memory allocation being deleted (i.e. in this case an

‘int’).

An example of the ‘ROCKALL_DELETE’ class is shown in ‘Example-06-33’ below:

#include "SingleThreadedHeap.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 FILE_ADDRESS Address;

 int *Data;

 FILE_SIZE Space;

 if

 (

 ROCKALL_NEW<int>::New

 (

 & Heap,

 & Address,

 & Data,

 1,

 & Space,

 False,

 True

)

)

 {

 ROCKALL_DELETE<int>::Delete

 (

 & Heap,

 Address,

 1,

 True

);

 }

 return 0;

 }

Example-06-33

The ‘ROCKALL_DELETE’ class in ‘Example-06-33’ supports a number of variants of

the function ‘Delete’.

The initial parameter is pointer to a Rockall-DB ‘Heap’ or instance of

‘AUTOMATIC_HEAP_SCOPE’.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 126

The next parameter is either a ‘FILE_ADDRESS’ or data pointer previously returned

from ‘New’ in the ‘ROCKALL_NEW’ class.

The next parameter is optional and is a count of instances of the type. The default

value is ‘1’. This parameter must match the corresponding parameter on the call to

‘New’ in the ‘ROCKALL_NEW’ class when the allocation was made. This parameter

controls the number of times the destructor is called before the allocation is deleted.

If the value is incorrect the destructor will be called too many or too few times and

this may damage other nearby data structures in the process.

The final parameter is optional and will zero the memory allocation just before it is

deleted if set to ‘True’ or do nothing if set to ‘False’ (i.e. see ‘Delete’ in section

5.2.1). The default value is ‘False’.

The ‘ROCKALL_DELETE’ class is designed to closely resemble the format and

functionality of the Rockall-DB ‘Delete’ function (see section 5.2.1 for further

details).

6.4.7. The RockallNew Class
The ‘ROCKALL_NEW’ class is the Rockall-DB alterative to the C++ ‘new’ operator.

The ‘ROCKALL_NEW’ class requires a template parameter to configure it. This

template parameter is the type of memory allocation being allocated (i.e. in this case

an ‘int’).

An example of the ‘ROCKALL_NEW’ class is shown in ‘Example-06-34’ below:

#include "SingleThreadedHeap.hpp"

#include "RockallDelete.hpp"

#include "RockallNew.hpp"

#include "RockallTypes.hpp"

int main(void)

 {

 SINGLE_THREADED_HEAP Heap;

 FILE_ADDRESS Address;

 int *Data;

 FILE_SIZE Space;

 if

 (

 ROCKALL_NEW<int>::New

 (

 & Heap,

 & Address,

 & Data,

 1,

 & Space,

 False,

 True

)

)

 {

 ROCKALL_DELETE<int>::Delete

 (

Rockall-DB March 2016

127 The Rockall-DB Library | Rockall Software Ltd.

 & Heap,

 Address,

 1,

 True

);

 }

 return 0;

 }

Example-06-34

The ‘ROCKALL_NEW’ class in ‘Example-06-34’ supports a number of variants of the

function ‘New’.

The initial parameter is a pointer to a Rockall-DB ‘Heap’ or instance of

‘AUTOMATIC_HEAP_SCOPE’.

The next parameter is optional and if present must point to a ‘FILE_ADDRESS’. If the

associated ‘Heap’ is a ‘DATABASE_HEAP’ this location will contain the

‘FILE_ADDRESS’ of the allocation (i.e. see ‘New’ in section 5.2.6).

The next parameter is a pointer to the location where the address of the new memory

allocation can be stored (i.e. a pointer to an ‘int*’ in this case).

The next parameter is optional and is used to help allocate arrays. Let’s say the value

‘3’ was supplied and the template parameter was type ‘int’. In this case, enough

space would be allocated for an array of type ‘int[3]’ and the constructor for ‘int’

would be called for each element in the array. The default value is ‘1’.

The next parameter is optional and will return the actual amount of space allocated if

it is supplied with a pointer to a ‘FILE_SIZE’ (i.e. see ‘New’ in section 5.2.6).

The next parameter is optional and will set the ‘Destroy’ flag (i.e. see ‘New’ in

section 5.2.6).

The final parameter is optional and will zero the memory allocation if set to ‘True’

or do nothing if set to ‘False’ (i.e. see ‘New’ in section 5.2.6). The default value is

‘False’.

The ‘ROCKALL_NEW’ class is designed to closely resemble the format and

functionality of the Rockall-DB ‘New’ function (see section 5.2.6 for further details).

6.4.8. The RockallTypes Header
The ‘RockallTypes.hpp’ header contains a number of common Rockall-DB

constants and types. The structure of the ‘RockallTypes.hpp’ header is shown in

‘Example-06-35’ below:

typedef ROCKALL::BOOLEAN BOOLEAN;

typedef ROCKALL::CHAR CHAR;

typedef ROCKALL::FILE_ADDRESS FILE_ADDRESS;

typedef ROCKALL::FILE_SIZE FILE_SIZE;

typedef ROCKALL::SBIT16 SBIT16;

typedef ROCKALL::SBIT32 SBIT32;

typedef ROCKALL::SBIT64 SBIT64;

typedef ROCKALL::WCHAR WCHAR;

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Library 128

static const BOOLEAN False = (ROCKALL::False);

static const BOOLEAN True = (ROCKALL::True);

static const SBIT32 NoRegion = (ROCKALL::NoRegion);

static const SBIT32 RockallDatabaseHeap = (ROCKALL::RockallDatabaseHeap);

static const SBIT32 RockallMultiThreadedHeap = (ROCKALL::RockallMultiThreadedHeap);

static const SBIT32 RockallSingleThreadedHeap = (ROCKALL::RockallSingleThreadedHeap);

static const SBIT32 RockallTransactionalHeap = (ROCKALL::RockallTransactionalHeap);

static const SBIT32 RockallFileSupport = (ROCKALL::RockallFileSupport);

static const SBIT32 RockallLockSupport = (ROCKALL::RockallLockSupport);

static const SBIT32 RockallMemorySupport = (ROCKALL::RockallMemorySupport);

static const SBIT32 RockallTransactionalSupport = (ROCKALL::RockallTransactionalSupport);

Example-06-35

6.4.9. The VirtualDestructor Class
The ‘VIRTUAL_DESTRUCTOR’ class does not contain any functional code. All it does

is to make the destructor of any class that inherits from it ‘virtual’. It also ensures

that the associated ‘v-pointer’ is the first entry in the ‘v-table’ so that Rockall-

DB can find it if necessary. An example of the ‘VIRTUAL_DESTRUCTOR’ class and its

associated functionality is available in chapter 3 in ‘Example-03-09’ and ‘Example-

03-10’.

Rockall-DB March 2016

129 The Rockall-DB Build | Rockall Software Ltd.

7. The Rockall-DB Build
A Rockall-DB build consists of a single directory called ‘Build’ which contains a

number of sub-directories. These sub-directories are dedicated to specific areas of the

product and are outlined below.

7.1. The Documents Directory
The ‘Documents’ directory contains all of the documentation related to Rockall-DB,

which will typically include a copy of this manual.

7.2. The Examples Directory
The ‘Examples’ directory contains a collection of Rockall-DB examples grouped

together into a number of sub-directories. These sub-directories are dedicated to

specific areas of the product and are outlined below.

7.2.1. The Boggle Directory
The ‘Boggle’ directory contains solver for the well-known game ‘Boggle’. In this

game 16 dice each with letters on them are shaken and arranged into a 4 by 4 grid.

The goal is to find as many words in the 4 by 4 grid by using adjacent letters but

without reusing any of the letters. All of the source code is supplied in the ‘Code’

directory and an example dictionary is supplied in the ‘Data’ directory.

It is left to the reader to compile the C++ code in the ‘Code’ directory into a suitable

executable. A project is available in the directory ‘VisualStudio’ to build this and a

number of other examples if the reader has access to compatible tools. The resulting

program can then be run to build an example dictionary database as shown in

‘Example-07-01’ below:

Boggle.exe –c Dictionary.db Dictionary.txt

Example-07-01

In ‘Example-07-01’, ‘Boggle.exe’ is the name of the new executable program,

‘Dictionary.db’ is an arbitrary name for the new database and

‘Dictionary.txt’ is the name of the example dictionary supplied in the ‘Data’

directory.

When the above steps have been completed the new database (i.e. ‘Dictionary.db’)

can be used to play the game as shown in ‘Example-07-02’ below:

Boggle.exe –p Dictionary.db

Example-07-02

Following the steps in ‘Example-07-02’ will typically produce output similar to

‘Example-07-03’ below:

Please type in the 'Boggle' board. All you need to type in is the

letters on each line of the board without any spaces. The letters

can be in either capitals or lower case. A new line should be typed

at the end of each row of the board. All the rows should contain the

same number of letters. When you have typed in all the rows on the

board simply enter a blank line to denote the end of the board.

Please enter a 'Boggle' board now:

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Build 130

wert

sdfg

zxcv

qwer

The 'Boggle' board size is 4 x 4:

The 'Boggle' words are:

Score 2 for 'crew'

Score 1 for 'dew'

Score 2 for 'drew'

Score 1 for 'fed'

Score 1 for 'few'

Score 2 for 'grew'

Score 1 for 'red'

Score 1 for 'sew'

Score 1 for 'vex'

Score 2 for 'wert'

The total score is 14.

Example-07-03

7.2.1. The Book Directory
The ‘Book’ directory contains an example of a program that builds a new database

from all the words in a book. The new database can then be used to search for

arbitrary keywords in the book to find any related paragraphs. All of the source code

is supplied in the ‘Code’ directory and an example book is supplied in the ‘Data’

directory.

It is left to the reader to compile the C++ code in the ‘Code’ directory into a suitable

executable. A project is available in the directory ‘VisualStudio’ to build this and a

number of other examples if the reader has access to compatible tools. The resulting

program can then be run to build an example database as shown in ‘Example-07-03’

below:

Book.exe –c Database.db Book.txt

Example-07-03

In ‘Example-07-03’, ‘Book.exe’ is the name of the new executable program,

‘Database.db’ is an arbitrary name for the new database and ‘Book.txt’ is the

name of the example book supplied in the ‘Data’ directory.

Following the steps in ‘Example-07-03’ will typically produce output similar to

‘Example-07-05’ below:

Summary: 789638 words (12557 unique)

Example-07-05

When the above steps have been completed the new database (i.e. ‘Database.db’)

can then be searched as shown in ‘Example-07-06’ below:

Book.exe –f Database.db door knock

Example-07-06

Rockall-DB March 2016

131 The Rockall-DB Build | Rockall Software Ltd.

In ‘Example-07-06’, ‘Book.exe’ is the name of the executable program,

‘Database.db’ is the new database built in ‘Example-07-04’ and ‘door’ and

‘knock’ are arbitrary keywords to find in the book.

The example book supplied in the ‘Data’ directory is a copy of the ‘King James’

version of the Bible which dates back to 1611. This book was selected because God

is considerably more generous with his copyright terms than many other authors.

Regardless, any book with a similar format could be substituted in its place.

Following the steps in ‘Example-07-06’ will typically produce output similar to

‘Example-07-07’ below:

Matches: 2 matching reference(s) found.

Title: 'The Gospel According to Saint Luke'

Reference:

'13:25 When once the master of the house is risen up, and hath shut

to the door, and ye begin to stand without, and to knock at the door,

saying, Lord, Lord, open unto us; and he shall answer and say unto

you, I know you not whence ye are: 13:26 Then shall ye begin to say,

We have eaten and drunk in thy presence, and thou hast taught in our

streets.'

Title: 'The Revelation of Saint John the Devine'

Reference:

'3:20 Behold, I stand at the door, and knock: if any man hear my

voice, and open the door, I will come in to him, and will sup with

him, and he with me.'

Example-07-07

It is left to the reader to try other keywords, examine the C++ source code and from

this starting point draw benefit from the example.

7.2.2. The Dump Directory
The ‘Dump’ directory contains an example of a program that converts the contents of

an arbitrary Rockall-DB ‘DATABASE_HEAP’ file in printable dump format. It achieves

this by walking the related ‘DATABASE_HEAP’ and outputting a string for every active

allocation it encounters.

It is left to the reader to compile the C++ code in the ‘Code’ directory into a suitable

executable. A project is available in the directory ‘VisualStudio’ to build this and a

number of other examples if the reader has access to compatible tools. The resulting

program can then be run on a suitable file as shown in ‘Example-07-05’ below:

Dump.exe Database.db

Example-07-08

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Build 132

In ‘Example-07-08’, ‘Dump.exe’ is the name of the new executable program and

‘Database.db’ is an arbitrary file name relating to a suitable file (i.e.

‘Database.db’ from ‘Example-07-04’).

Following the steps in ‘Example-07-08’ will typically produce output similar to

‘Example-07-09’ below:

0x003af0a0 (0x01bdf0a0) 32 : 0000000000000010000000000000000700676e696b6c61740000000000000000 : ????????????????talking?????????

0x003af0c0 (0x01bdf0c0) 32 : 0000000000000010000000000000000500000072616d61740000000000000000 : ????????????????tamar???????????

0x003af0e0 (0x01bdf0e0) 32 : 0000000000000010000000000000000700646569727261740000000000000000 : ????????????????tarried?????????

0x003af100 (0x01bdf100) 32 : 0000000000000010000000000000000500000079727261740000000000000000 : ????????????????tarry???????????

0x003af120 (0x01bdf120) 32 : 0000000000000010000000000000000500000068616265740000000000000000 : ????????????????tebah???????????

0x003af140 (0x01bdf140) 32 : 00000000000000100000000000000004000000006c6c65740000000000000000 : ????????????????tell????????????

0x003af160 (0x01bdf160) 32 : 0000000000000010000000000000000400000000616d65740000000000000000 : ????????????????tema????????????

0x003af180 (0x01bdf180) 32 : 000000000000001000000000000000050000006e616d65740000000000000000 : ????????????????teman???????????

0x003af1a0 (0x01bdf1a0) 32 : 000000000000001000000000000000060000696e616d65740000000000000000 : ????????????????temani??????????

0x003af1c0 (0x01bdf1c0) 32 : 0000000000000010000000000000000500000074706d65740000000000000000 : ????????????????tempt???????????

0x003af1e0 (0x01bdf1e0) 32 : 0000000000000010000000000000000300000000006e65740000000000000000 : ????????????????ten?????????????

0x003af200 (0x01bdf200) 32 : 0000000000000010000000000000000600007265646e65740000000000000000 : ????????????????tender??????????

0x003af220 (0x01bdf220) 32 : 0000000000000010000000000000000400000000746e65740000000000000000 : ????????????????tent????????????

0x003af240 (0x01bdf240) 32 : 0000000000000010000000000000000500000068746e65740000000000000000 : ????????????????tenth???????????

0x003af260 (0x01bdf260) 32 : 0000000000000010000000000000000500000073746e65740000000000000000 : ????????????????tents???????????

0x003af280 (0x01bdf280) 32 : 0000000000000010000000000000000500000068617265740000000000000000 : ????????????????terah???????????

0x003af2a0 (0x01bdf2a0) 32 : 000000000000001000000000000000060000726f727265740000000000000000 : ????????????????terror??????????

0x003af2c0 (0x01bdf2c0) 32 : 0000000000000010000000000000000700687361686168740000000000000000 : ????????????????thahash?????????

0x003af2e0 (0x01bdf2e0) 32 : 00000000000000100000000000000004000000006e6168740000000000000000 : ????????????????than????????????

0x003af300 (0x01bdf300) 32 : 0000000000000010000000000000000400000000746168740000000000000000 : ????????????????that????????????

0x003af320 (0x01bdf320) 32 : 0000000000000010000000000000000300000000006568740000000000000000 : ????????????????the?????????????

0x003af340 (0x01bdf340) 32 : 0000000000000010000000000000000400000000656568740000000000000000 : ????????????????thee????????????

0x003af360 (0x01bdf360) 32 : 0000000000000010000000000000000500000072696568740000000000000000 : ????????????????their???????????

0x003af380 (0x01bdf380) 32 : 00000000000000100000000000000004000000006d6568740000000000000000 : ????????????????them????????????

0x003af3a0 (0x01bdf3a0) 32 : 00000000000000100000000000000004000000006e6568740000000000000000 : ????????????????then????????????

0x003af3c0 (0x01bdf3c0) 32 : 00000000000000100000000000000006000065636e6568740000000000000000 : ????????????????thence??????????

0x003af3e0 (0x01bdf3e0) 32 : 0000000000000010000000000000000500000065726568740000000000000000 : ????????????????there???????????

0x003af400 (0x01bdf400) 32 : 0000000000000010000000000000000700796265726568740000000000000000 : ????????????????thereby?????????

0x003af420 (0x01bdf420) 32 : 00000000000000100000000000000007006e6965726568740000000000000000 : ????????????????therein?????????

0x003af440 (0x01bdf440) 32 : 0000000000000010000000000000000700666f65726568740000000000000000 : ????????????????thereof?????????

0x003af460 (0x01bdf460) 32 : 00000000000000100000000000000007006e6f65726568740000000000000000 : ????????????????thereon?????????

(*** A large section of the dump has been removed ***)

Totals: Active 17202 (4592776 bytes), Idle 1853 (846184 bytes)

Example-07-09

Clearly, a dump would typically be much larger than ‘Example-07-09’ but to save

space only part of the dump appears in this manual.

It is left to the reader to examine the C++ source code and from this starting point

draw benefit from the example. Nonetheless, this example is actually a practical tool

that may prove useful in some situations when using Rockall-DB.

7.2.3. The Manual Directory
The ‘Manual’ directory contains most of the programming examples provided in this

manual and other documents relating to Rockall-DB. Most of the examples are free-

standing C++ programs and can be easily compiled into executable code. These

examples are intended as demonstrations and as starting points for developing more

complex programs. A project is available in the directory ‘VisualStudio’ to build this

and a number of other examples if the reader has access to compatible tools.

7.2.4. The MultiLanguage Directory
The whole of Rockall-DB was originally written in Microsoft C++ and targeted at the

Microsoft Windows operating system. These choices were made because at the time

very few programming languages were flexible enough, fast enough or powerful

enough to support Rockall-DB (i.e. features such as templates) and because Microsoft

Windows was a widely accepted platform with advanced support for features such as

asynchronous I/O, multi-threading and wide character support. Nonetheless, from the

beginning Rockall-DB was intended to support multiple programming languages and

to be portable to multiple operating systems.

The ‘MultiLanguage’ directory contains the first steps along this pathway towards

multi-language support and multi-operating system support. The current files in this

Rockall-DB March 2016

133 The Rockall-DB Build | Rockall Software Ltd.

directory are ‘MultiLanguage.hpp’ and ‘MultiLanguage.cpp’. These files

convert a number of the Rockall-DB interfaces into standard ‘C’ type functions

suitable for calls from other programming languages such as C#, COBOL, Fortran,

Java and Pascal. Any user that is keen to tailor this interface to any of the above

programming languages (or other programming languages) should contact Rockall

Software Ltd for additional support and to optionally get these tailored interfaces

rolled into later versions of Rockall-DB.

A pre-built version of ‘MultiLanguage.hpp’ and ‘MultiLanguage.cpp’ has been

compiled into a Dynamic Link Library (DLL) and appears along with all the other

Rockall-DB object files. The names of the related files are ‘MultiLanguage.lib’

and ‘MultiLanguage.dll’ and can be used directly without modification by users.

The source code files ‘MultiLanguage.hpp’ and ‘MultiLanguage.cpp’ are

provided so that these interfaces can be adjusted, extended or modified to fit the

precise requirements of users.

7.3. The Unix Directory
The ‘Unix’ directory will contain builds of Rockall-DB for versions of UNIX when

they become available.

7.4. The Windows Directory
The ‘Windows’ directory contains a build of Rockall-DB for Microsoft Windows and

contains a number of sub-directories. These sub-directories are dedicated to specific

areas of the product and are outlined below.

7.4.1. The Include Directory
The ‘Include’ directory contains all the header files relating to the Rockall-DB core

and Rockall-DB library. Any of these header files can be included into suitable

source code, as demonstrated in examples in chapters 3 and 4. An explanation of all

of the header files is available in chapter 6 above.

There are a number of sub-directories within the ‘Include’ directory and typically

all of these sub-directories should be added into the C++ ‘Include’ path to fully

utilize the product. Alternatively, the contents of these sub-directories could be

copied into an alternative directory that is already on the ‘Include’ path and be used

in this way.

A significant portion of Rockall-DB has been coded in a C++ ‘namespace’ called

‘ROCKALL’ to mitigate symbol clashes. Consequently, it may occasionally be

necessary to refer to functions or types in Rockall-DB by their fully qualified names

(e.g. such as ‘ROCKALL::BOOLEAN’). If this becomes tiresome it can easily be

avoided by a declaration such as shown in ‘Example-07-10’ below:

typedef ROCKALL::BOOLEAN MY_NAME;

Example-07-10

An additional preprocessor flag called ‘DISABLE_ROCKALL_GLOBAL_TYPES’ is also

available to remove some of the global Rockall-DB types and so as mitigate symbol

clashes.

March 2016 Rockall-DB

Rockall Software Ltd. | The Rockall-DB Build 134

7.4.2. The Library Directory
The ‘Library’ directory contains all the various native code builds of Rockall-DB.

The ‘Library’ directory contains the ‘Win32’ and the ‘x64’ sub-directories, which

contain the various 32-bit and 64-bit builds of the product respectively. The ‘Win32’

and ‘x64’ directories contain the ‘Debug’ and ‘Release’ sub-directories, which

contain a debugging build and a fully optimized build of Rockall-DB respectively.

Additionally, there may sometimes be a ‘Trace’ sub-directory which contains an

extending ‘Debug’ build of Rockall-DB that includes additional code for tracing

memory leaks.

All of the builds are provided as a linkable library file (i.e. ‘*.lib’) along with an

associated dynamic link library file (i.e. ‘*.dll’) and optionally a symbol file (i.e.

‘*.pdb’). The linkable library from the selected build should be included in the

compilation process in usual way. The related dynamic link library along with any

associated symbol file should be placed on dynamic load path, optionally with any

other necessary executables (i.e. such as any other necessary ‘*.dll’, ‘*.exe’ or

‘*.pdb’ files).

There is no need to register or install anything with Rockall-DB. All that is required

is to link with the appropriate linkable library file (i.e. include the appropriate

‘*.lib’ when linking the final executable) and to have the dynamic link library file

available in the load path for executables. Unfortunately, the precise mechanism for

this varies for specific compilers and languages but a typical example for C or C++

might be as shown in ‘Example-07-11’ below:

cc MyProgram.cpp Rockall-DB.lib

Example-07-11

7.5. A Quick Start Guide
The easiest way to get Rockall-DB up and running is to simply copy all the necessary

headers and libraries into the same directory and then compile the application and run

it. Let’s use the ‘Dump’ program discussed above as an example. We first need to

copy the source code of the program (i.e. ‘Dump.cpp’) into a newly created empty

directory. We then need to copy all the headers in all ‘include’ subdirectories into

the same directory. Finally, we need to copy the appropriate version of

‘RockallDB.lib’ and ‘RockallDB.dll’ (i.e. the 32 bit or 64 bit version) into the

same directory.

Unfortunately, the precise mechanism for doing the compilation varies for specific

compilers and languages but a typical example for C or C++ might be as shown in

‘Example-07-12’ below:

cc Dump.cpp Rockall-DB.lib

Example-07-12

The above command should compile ‘Dump.cpp’ and link it with ‘RockallDB.dll’

to create an executable version of it. This should work because everything needed to

complete the compilation is in the same directory (i.e. all the include files, libraries

and dynamic link libraries). Finally, the new executable can be typically run by

typing a command like the one shown in ‘Example-07-13’ below:

Rockall-DB March 2016

135 Advice and Guidance | Rockall Software Ltd.

Dump.exe

Example-07-13

8. Advice and Guidance
The ‘Advice and Guidance’ section is intended to help users get the most out of

Rockall-DB. A wide variety of areas are discussed to highlight various aspects of the

product.

8.1. Architecture
A number of architecture related topics are covered in this section. These topics are

presented in alphabetical order and are not necessarily closely related.

8.1.1. The Design and Implementation of Multiuser Systems
A number of common architectural and design patterns have been developed over the

last few decades. A few well-known examples are ‘Client/Server’, ‘Service Oriented

Architectures’ and ‘3-tier Architectures’. Some might imply that Rockall-DB is not

particularly good at supporting some of these historical architectures and that it might

be helpful if Rockall-DB provided a remote access layer like many traditional

databases (i.e. an interface like ‘ODBC’). While something of this nature may be

provided in later versions of Rockall-DB it seems worthwhile to briefly discuss

reasons why was not included initially and the downsides of such technologies.

A remote access technology (i.e. like ‘ODBC’) allows a program to send ‘SQL’

statements to a remote database and to receive back the associated result sets. If we

consider the resources required to send a ‘SQL’ statement to a remote machine,

receive it on the remote machine, execute the necessary context switches, execute the

‘SQL’ statement, marshal the result set, send the results back across the network and

then return them to the calling process, then it is obvious that all such technologies

can never be very efficient, responsive or scalable. Moreover, with Rockall-DB it is

often possible to compute and process an entire result set before remote access

technologies can even send the first network packet. Consequently, a conscious

decision was made to deprecate such models in Rockall-DB as they are the sworn

enemies of performance. Nonetheless, this poses the question as to what suitable

alternative models are available to replace them.

A common suggestion is to move all of the components of a system onto a single

server and ideally execute the entire system within a single process. Clearly, for

reliability reasons such a node would need to be part of a cluster and some additional

changes may be needed for security. Nonetheless, this is entirely practical and

reasonable in most cases. Clearly, there will be howls of protest at this point and so

we will now try to deal with most of these objections.

Let’s begin with a challenge. The challenge is to take an existing multi-node system

and to move it onto a single node and measure the change in performance. There is

no need to modify the system in any way or remove any networking code. Simply

load the entire system on to a suitable single node and measure the change in

performance. It is not uncommon to see a performance improvement of between 2

and 5 fold even when using significantly less hardware. This often catches developers

unawares because few people fully understand the costs and overheads associated

with networking. A common objection is that such a system is not scalable. This

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 136

may have been a concern a few years ago but today a single node to capable of

supporting thousands of users and consisting of 24+ cores, gigabytes of DRAM and

terabytes of storage costs just a few thousand dollars. Consequently, building an

appropriate 2-node cluster is now cheap, easy and cost effective. Furthermore, day-

to-day management is far easier, as is disaster recovery. Moreover, replacing a

traditional ‘SQL’ oriented database with Rockall-DB only amplifies this effect driving

the levels of performance and scalability even higher. Another common objection is

that the database is no longer a single entity on a single machine and so this creates a

different type of complexity. However, this is already the case in many larger

installations and it is common to have multiple databases managed by separate

machines but stored in a common storage system (i.e. a ‘SAN’). Furthermore,

separating databases in this way typical reduces data fragmentation and so again

enhances performance and scalability. A final concern is that merging databases into

front-end web servers (or the like) introduces significant security risks. Again, such

problems can be overcome using various methods (see section 8.4 for a suggested

solution) and so this is not a major concern. Moreover, if properly designed the final

result can significantly improve security rather than put it at risk.

In summary, Rockall-DB often challenges existing architectures, design patterns and

thinking and calls into questions their intellectual basis. Moreover, Rockall-DB often

shamelessly strives for performance, responsiveness, scalability and simplicity even

when this might be unpopular. Consequently, the philosophy of Rockall-DB

deprecates patterns of thinking that lead to poor architecture and design patterns to

actively encourage better architectures and designs. It is believed that this stand will

ultimately lead to better products.

8.1.2. The Design of Storage Structures
A nice feature in many existing transactional databases is the ability to add new

columns into existing rows within a database table. While this can be quite helpful

the performance implications of this feature can be somewhat dire.

A ‘SELECT’ statement in ‘SQL’ allows a user to choose which of the available fields

they would like to appear in the final result set. Regardless, all of the available fields

are still typically read from storage and usually copied into the required position in the

final result set.

All of the above implies a very significant performance overhead and so is not

supported in Rockall-DB. Nonetheless, many of the associated benefits can still be

obtained in Rockall-DB by making a small design change. All that is needed is a

unique ‘Type’ field as the first element in any relevant class or data structure. While

this might seem like a fairly modest requirement there are significant benefits

associated with it. A selection of these benefits is outlined below:

1. When using ‘Update’ or ‘View’ a simple ‘if’ or ‘switch’ statement

can ensure that the associated allocation contains the correct ‘Type’ of data

structure.

2. When using ‘Walk’ specific data structures could be easily identified and

processed by simply examining their ‘Type’ fields. Consequently, the

Rockall-DB March 2016

137 Advice and Guidance | Rockall Software Ltd.

‘Walk’ function can easily become a powerful tool for carrying out global

checks or modifications to a database.

3. If it became necessary to add new members to an existing structure or change

its format simply adding a new ‘Type’ value would allow both the old and

new data formats to co-exist within the same file. If necessary, a simple

program could be written to convert the old format into the new format.

Alternatively, a statement like ‘switch’ could permit multiple formats to co-

exist within the file be processed appropriately.

4. If the structure of a file became corrupted the ‘Type’ field typically permits

the file to be easily rebuilt as the ‘Walk’ function can be used to pull out all of

the key data structures from the damaged file. These data structures could

then be verified and used to build a new file.

Let’s take the concept a little further. It is possible to use advanced object oriented

concepts such as inheritance and multiple inheritance with Rockall-DB. The main

restriction is that such objects cannot contain any memory pointers when used in

conjunction with a ‘DATABASE_HEAP’ (i.e. no memory addresses or v-tables).

Consequently, newer or more complex data structures can inherit from older or less

complex base classes and still be transactionally stored within a file. This provides a

natural and powerful way to extend existing classes and data structures.

In summary, a few simple architectural changes allow Rockall-DB to offer many of

the advantages of traditional transactional databases but with little of the associated

impact on performance.

8.1.3. Understanding the Cost Metrics
It is important to understand the cost metrics associated with each of the Rockall-DB

heaps. Consequently, we will consider the ‘Book’ example discussed in section 7.2.1

and see how changing the Rockall-DB heap and the string type impacts performance.

The precise details of the example are not important to our discussion, except to note

that the example builds an index of around 12,557 unique words from a total of

around 789,638 non-unique words.

Let’s consider the time to execute the example for each of the Rockall-DB heaps

using the ‘FIXED_STRING’ class in ‘Table-08-01’ below:

Heap Release Build Debug Build
DATABASE_HEAP 12.02 secs 86.02 secs
TRANSACTIONAL_HEAP 5.02 secs 46.02 secs
MULTI_THREADED_HEAP 2.27 secs 14.41 secs
SINGLE_THREADED_HEAP 2.01 secs 12.01 secs

Table-08-01

Now, we see that for a release build of the ‘DATABASE_HEAP’ that it takes 12.02 secs

to process the 789,638 words, which is around 65,694 words per second. The

processing for each word involves at least one index lookup and an insert into a ‘SET’

or a ‘TREE’. Arguably, this is not unreasonable level of performance for a

transactional database.

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 138

Nonetheless, if we substitute the ‘DATABASE_HEAP’ for a ‘TRANSACTIONAL_HEAP’

the elapse time drops from 12.02 secs to 5.02 secs, which is about 2.4 times faster.

The change in performance is because a ‘TRANSACTIONAL_HEAP’ does not need to do

any file management and or support a file cache. Instead, all of its data is held in

main memory.

Again, if we substitute the ‘TRANSACTIONAL_HEAP’ with a

‘MULTI_THREADED_HEAP’ the elapse time drops from 5.02 secs to 2.27 secs, which is

about 2.2 times faster. In this case, the change in performance is because a

‘MULTI_THREADED_HEAP’ does not need to create any transactions, call the lock

manager, copy any data for calls to ‘Update’ or clean up at the end of a transaction.

Finally, if we substitute the ‘MULTI_THREADED_HEAP’ with a

‘SINGLE_THREADED_HEAP’ the elapse time drops from 2.27 secs to 2.01 secs, which

is about 12% faster. In this case, the change in performance is because a

‘SINGLE_THREADED_HEAP’ does not need claim any locks.

What these metrics make clear is that there is a powerful performance argument for

using a ‘SINGLE_THREADED_HEAP’ or a ‘MULTI_THREADED_HEAP’ in preference to a

‘TRANSACTIONAL_HEAP’ or a ‘DATABASE_HEAP’ where this is appropriate.

Let’s now consider the same example but this time substitue the ‘FIXED_STRING’

class with the ‘FLEXIBLE_STRING’ class. The corresponding results are listed in

‘Table-08-02’ below:

Heap Release Build Debug Build
DATABASE_HEAP 85.16 secs 686.09 secs
TRANSACTIONAL_HEAP 34.10 secs 341.07 secs
MULTI_THREADED_HEAP 2.27 secs 15.02 secs
SINGLE_THREADED_HEAP 2.01 secs 14.01 secs

Table-08-02

What we see in this case is a significant drop in performance for ‘DATABASE_HEAP’

and ‘TRANSACTIONAL_HEAP’ but only a modest change in performance for

‘MULTI_THREADED_HEAP’ and ‘SINGLE_THREADED_HEAP’. In this case, the change

in performance is because a ‘FLEXIBLE_STRING’ is split into two parts and so

requires a large number of extra allocations (i.e. calls to ‘New’). Furthermore, this

change in the number of allocations also significantly increases the number of calls

related functions like ‘ExclusiveView’, ‘Update’ and ‘View’. All of these are

expensive calls in a ‘DATABASE_HEAP’ or ‘TRANSACTIONAL_HEAP’ but are typically

optimized away in a ‘MULTI_THREADED_HEAP’ and ‘SINGLE_THREADED_HEAP’.

Clearly, this is an extreme example but hopefully demonstrates that splitting data

structures seriously hurts performance in many situations. In some regards, this is

obvious as any transactional system will clearly need to record more changes in the

log, do more calls to the lock manager, lock and unlock more areas of memory and

possibly initiate additional file transfers for the related data.

Rockall-DB March 2016

139 Advice and Guidance | Rockall Software Ltd.

Holding this thought for a moment, we see that relational databases and third normal

form tend to drive software architectures towards larger numbers of tables and shorter

row lengths. Adding insult to injury, it is not uncommon to have to join these tables

together again to undo this architectural separation. This typically consumes

noticeable amounts of additional CPU time. In short, it is probably prudent to try to

avoid these types of structures in Rockall-DB or any other transactional database for

that matter.

Let’s take a look what we can do about this in Rockall-DB by considering the data

structure shown in ‘Example-08-01’ below:

#include "DatabaseHeap.hpp"

#include "FlexibleString.hpp"

#include "NoLock.hpp"

typedef FLEXIBLE_STRING<DATABASE_HEAP,NO_LOCK> STRING;

typedef struct

 {

 STRING HouseName;

 STRING Street;

 STRING District;

 STRING City;

 STRING County;

 STRING Country;

 }

ADDRESS;

 Example-08-01

What we see in ‘Example-08-01’ may seem like a very reasonable data structure for a

transactional database. However, we should note that a ‘FLEXIBLE_STRING’ has a

fixed header part and a flexible text part. Consequently, this is not just a simple

‘struct’ as it might appear but rather a ‘struct’ accompanied by up to 6 additional

flexible text parts (i.e. up to 7 allocations in all). Now, we could try to mitigate this

by merging some of the strings as shown in ‘Example-08-02’ below:

#include "DatabaseHeap.hpp"

#include "FlexibleString.hpp"

#include "NoLock.hpp"

typedef FLEXIBLE_STRING<DATABASE_HEAP,NO_LOCK> STRING;

typedef struct

 {

 STRING HouseAndStreet;

 STRING DistrictAndCity;

 STRING CountyAndCountry;

 }

ADDRESS;

Example-08-02

Now while this might improve performance by reducing the number of flexible text

parts (i.e. from 7 to 4 allocations) it introduces other complications.

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 140

An alternative might be to replace the ‘FLEXIBLE_STRING’ class with the

‘FIXED_STRING’ class as shown in ‘Example-08-03’ below:

#include "DatabaseHeap.hpp"

#include "FixedString.hpp"

#include "NoLock.hpp"

typedef FIXED_STRING<DATABASE_HEAP,NO_LOCK,32> STRING;

typedef struct

 {

 STRING HouseName;

 STRING Street;

 STRING District;

 STRING City;

 STRING County;

 STRING Country;

 }

ADDRESS;

Example-08-03

Now, ‘Example-08-03’ would be far more efficient than ‘Example-08-01’ because the

‘struct’ is now a fixed size and so just a single allocation (i.e. there are no

additional flexible string parts). Let’s now assume that a customer record consists of

a name, age, date of birth, member ID and up to 3 addresses. We could code this as

shown in ‘Example-08-04’ below:

#include "DatabaseHeap.hpp"

#include "FixedString.hpp"

#include "NoLock.hpp"

typedef FIXED_STRING<DATABASE_HEAP,NO_LOCK,32> STRING;

typedef struct

 {

 STRING HouseName;

 STRING Street;

 STRING District;

 STRING City;

 STRING County;

 STRING Country;

 }

ADDRESS;

typedef struct

 {

 STRING Forename;

 STRING Surname;

 ADDRESS Address[3];

 int Age;

 STRING DateOfBirth;

 int MemberID;

 }

CUSTOMER;
Example-08-04

Rockall-DB March 2016

141 Advice and Guidance | Rockall Software Ltd.

Again, this is a fixed size simple allocation and so is highly efficient. Now, let’s

assume that for some reason we would like to store an number of the customers

together in a single array. We could code this as shown in ‘Example-08-05’ below:

#include "DatabaseHeap.hpp"

#include "FixedString.hpp"

#include "NoLock.hpp"

typedef FIXED_STRING<DATABASE_HEAP,NO_LOCK,32> STRING;

typedef struct

 {

 STRING HouseName;

 STRING Street;

 STRING District;

 STRING City;

 STRING County;

 STRING Country;

 }

ADDRESS;

typedef struct

 {

 STRING Forename;

 STRING Surname;

 ADDRESS Address[3];

 int Age;

 STRING DateOfBirth;

 int MemberID;

 }

CUSTOMER;

typedef struct

 {

 int Count;

 CUSTOMER Customer[1];

 }

CUSTOMERS;

Example-08-05

Now, in this case we could create a suitably sized ‘CUSTOMERS’ structure by calling

‘New’. Then we could set ‘Count’ to the correct size and finally copy in all the

‘CUSTOMER’ details into the new data structure. We could adjust the size of the

‘CUSTOMERS’ structure at any time by calling ‘Resize’ and inserting or removing

‘CUSTOMER’ details as necessary.

What we are highlighting here is that the ‘CUSTOMERS’ structure is still a fixed size

simple allocation and so could be loaded by a single call to ‘ExclusiveView’,

‘Update’ or ‘View’. A typical relational database typically requires multiple

tables, multiple rows and possibly multiple joins to compute such a table.

Consequently, using a structure like this in Rockall-DB would simply blow away most

relational databases in terms of performance.

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 142

A number of the benefits of using Rockall-DB exist not because it is clever but rather

because it is flexible. This flexibility allows very different transactional data

structures to be built. It is not that Rockall-DB doesn’t support the classical

transactional data structures (i.e. such as classical relational data structures). It is

because these structures are optional and can be used when needed rather than being

forced upon developers.

In summary, when using Rockall-DB it is now possible to break the mould and think

in new ways. There is now no longer any need to be shackled to third normal form.

In many respects, a new day has dawned where developers can have genuine

flexibility in their choice of transactional data structures. A day where words like

arrays, hash tables, queues, sets, stacks and unions can be used in the same sentence

as words like columns, rows, tables and transactions.

8.2. Performance
A number of performance related topics are covered in this section. These topics are

presented in alphabetical order and are not necessily closely related.

8.2.1 Asynchronous Read-Ahead
A temptation in Rockall-DB is to code algorithms in a sequential style rather than a

‘SET’ based style.

Let’s take a look at some code that tries to sum the ‘Age’ values from the structures

outlined in ‘Example-08-04’ as shown in ‘Example-08-06’ below:

#include "DatabaseHeap.hpp"

#include "Example-08-04.hpp"

#include "RockallTypes.hpp"

int SumAges

 (

 FILE_ADDRESS Array[],

 DATABASE_HEAP *Heap,

 int Size

)

 {

 int Total = 0;

 int Count;

 for (Count=0;Count < Size;Count ++)

 {

 CUSTOMER *Customer;

 if (Heap -> View(Array[Count],((VOID**) & Customer)))

 {

 Total += Customer -> Age;

 Heap -> EndView(Array[Count]);

 }

 }

 return Total;

 }
Example-08-06

Rockall-DB March 2016

143 Advice and Guidance | Rockall Software Ltd.

The function ‘SumAges’ in ‘Example-08-06’ requires an ‘Array’ of

‘FILE_ADDRESS’ values (which refer to ‘CUSTOMER’ structures), a ‘Heap’ and

the ‘Size’ of the ‘Array’. The function sums all the ‘Age’ values in the related to

‘CUSTOMER’ structures and returns the total.

The key concern in ‘Example-08-06’ is that the call to ‘View’ is synchronous.

Consequently, if the ‘Array’ contained 1,000 ‘FILE_ADDRESS’ values and each of

these required an file transfer taking 5ms then ‘Example-08-06’ could take up to 5

secs to execute.

Now, a small addition to this code would typically dramatically improve the

performance as shown in ‘Example-08-07’ below:

#include "DatabaseHeap.hpp"

#include "Example-08-04.hpp"

#include "RockallTypes.hpp"

int SumAges

 (

 FILE_ADDRESS Array[],

 DATABASE_HEAP *Heap,

 int Size

)

 {

 int Total = 0;

 int Count;

 for (Count=0;Count < Size;Count ++)

 { Heap -> Touch(Array[Count]); }

 for (Count=0;Count < Size;Count ++)

 {

 CUSTOMER *Customer;

 if (Heap -> View(Array[Count],((VOID**) & Customer)))

 {

 Total += Customer -> Age;

 Heap -> EndView(Array[Count]);

 }

 }

 return Total;

 }

Example-08-07

The key change in ‘Example-08-07’ is to call ‘Touch’ (see section 5.4.8) for every

value in the ‘Array’ before the first call to ‘View’. The call to ‘Touch’ will initiate

all of the file transfers in the ‘Array’ immediately reducing the execution time of

‘Example-08-07’ from around 5 secs to under 1 sec (assuming suitable I/O hardware

is available).

The Rockall-DB library contains the ‘ROW_SET’ class (see section 6.2.6) to assist in

precisely these types of situations.

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 144

8.2.2. Automatic Allocation Alignment
All calls to ‘New’ or ‘Resize’ with a size that is a power of 2 and less than 4,096

will produce a memory allocation that is aligned on the same power of 2 boundary.

Consequently, if the size passed to ‘New’ is 1,024 then the memory allocated will

always be on at least a 1,024 byte boundary.

All calls to ‘New’ or ‘Resize’ with a size that is a power of 2 and greater than 4,096

will produce a memory allocation that is aligned on a 4,096 byte boundary. So, if the

size passed to ‘New’ is 8,192 then the memory allocated will always be on at least a

4,096 byte boundary.

Consequently, there is seldom a need to any memory alignment on Rockall-DB

memory allocations. Moreover, this is part of a number of a subtle optimizations

which ensure that Rockall-DB allocations naturally fall into cache-lines and operating

system pages to help boost performance and minimize file requests.

8.2.3. Data Density
All Rockall-DB memory allocations are packed togther nose to tail within a page with

no intervening heap data structures. This dense packing of user allocations typically

results in fewer cache-line misses and page faults and so leads to higher levels of

performance. Additionally, Rockall-DB actively tries to allocate the lowest suitable

memory address available, so as compress user allocations over time. The only

downside of this approach is that over-running the end of a memory allocation in

Rockall-DB will most lightly damage user data structures rather than heap data

structures. Regardless, this is a bug and will need to be fixed approriately.

8.2.4. Fragmentation
All Rockall-DB heaps actively try to compress themseleves by returning the lowest

memory addresses available for new allocations (i.e. as mentioned in section 8.2.3

above). Consequently, it is somewhat uncommon for Rockall-DB heaps to become

significantly fragmented. However, as a memory allocation can not be moved once it

has been made it is not uncomon for a small number of allocations to have high

memory addresses. Typically, this is not a concern except for a ‘DATABASE_HEAP’

where such allocations could prevent the compression of the associated file.

8.2.5. Storage Optimizations
All Rockall-DB ‘DATABASE_HEAP’ files have a natural stride of 64k bytes.

Consequently, it is optimal to select an alignment size, block size and stripe size of

64k for any related storage systems. There are cases where SAN providers and others

have made alternative recommendations. Such recommendations should typically be

ignored in relation to Rockall-DB unless supported up by actual performance

measurements.

8.3. Portability
The original development for Rockall-DB was carried out on Microsoft Windows.

Nonetheless, all of the operating systems interfaces are well isolated and porting to

alternative operating systems is straight-forward if similar facilities to ‘Kernel.dll’

are available (i.e. asynchronous I/O, files, memory space, semaphores, processes,

threads and thread local store). Furthermore, Rockall-DB is also suitable for use

within hardware devices or operating systems as the main file system.

Rockall-DB March 2016

145 Advice and Guidance | Rockall Software Ltd.

Anyone interested in these areas should make direct contact with Rockall Software

Ltd to discuss a source code license.

8.4. Reliability
A number of reliabilty related topics are covered in this section. These topics are

presented in alphabetical order and are not necessily closely related.

8.4.1. Backups
A Rockall-DB ‘DATABASE_HEAP’ file is normal file and can be backed up in the

usual way when not in use. If it is in use, it may be backed up if a snapshot of the file

can be taken at some instant in time (i.e. say by a SAN). Such a backup may contain

incomplete transactions and so may need to be recovered by opening it with

‘OpenFile’ with ‘ReadOnly’ set to ‘False’ to enable any necessary recovery to

take place (see section 5.4.2). Alternatively, the active program could internally call

the ‘CreateSnapshotFile’ function (see section 5.4.2) and dynamically create a

new snapshot which could then be optionally recovered and backed up.

8.4.2. Maintenance
A Rockall-DB ‘DATABASE_HEAP’ file should not require any maintenance.

Nonetheless, a number of situations may occur where it could be necessary to rebuild

a ‘DATABASE_HEAP’ file after it has been corrupted, damaged (i.e. as the result of a

virus) or as part of an upgrade. Consequently, it is suggested that writing a small

program capable of reading any existing Rockall-DB ‘DATABASE_HEAP’ files, doing

basic checks and then building a new copy of the file is a prudent investment. A

number of features have been included in Rockall-DB to make this easy, such as the

‘Walk’ function (see section 5.2.9).

8.4.3. Replication
A ‘live’ replica of a Rockall-DB ‘DATABASE_HEAP’ file can be created by calling

‘CreateShadowFile’ (see section 5.4.1). A ‘live’ replica of this type cannot be used

while it is being kept up-to-date and should be considered to be more of a ‘live’

backup. If it becomes necessary to make use of such a copy then no special treatment

is necessary. The copy can be simply opened and used in the usual way.

8.4.4. Security
A Rockall-DB ‘DATABASE_HEAP’ file is normal file and so is subject to the usual

operating system security. There are no additional levels of security except for the

option of supplying encryption functions to ‘CreateFile’ and ‘OpenFile’ (see

sections 5.3.1 and 5.4.3). If these functions are supplied then the contents of any

related files will remain encrypted when they are not in use. However, the contents of

these files will be decrypted when they are bought into main memory by Rockall-DB

and will remain this way until they are removed from main memory.

8.4.5. Torn Writes
A very nasty issue with many transactional databases is the potential for a ‘torn

write’. This can occur if a write (i.e. let’s say of 8k) is interupted by a power failure.

A situation can arise where the first 4k of an 8k write could been written but the last

4k is not written. Clearly, this can easily corrupt a database and so is potentially a

very serious situation.

March 2016 Rockall-DB

Rockall Software Ltd. | Advice and Guidance 146

A ‘torn write’ is automatically recovered by Rockall-DB without any intervention the

next time the file is opened by ‘OpenFile’ with ‘ReadOnly’ set to ‘False’ (see

section 5.4.1). No special hardware or extra steps are required beyond the

requirement that the file remains readable and updateable.

8.4.6 Security
The security of transactional databases has historically been somewhat challenging.

A good approach is to place all master databases behind one or more firewalls and

close all the in-bound ports. Consequently, all in-bound access to the master

databases would be blocked making a direct attack very difficult. In this model, any

updates would need to be performed by the master database reaching out through the

firewall to a less secure duplicate copy of the database which would updated in the

usual way. Clearly, any updates extracted by the master database using this

mechanism would need to be carefully checked before being applied. These duplicate

databases could be regularly refreshed from the master copies (i.e. daily) to ensure

they remained accurate and up-to-date.

While such an approach would certainly help to protect all the master databases the

duplicate copies would still remain vunerable to direct attack. A number of

approaches can be taken to fend off such attacks. A simple solution is to simply

encrypt all the duplicate databases. However, if this encryption were cracked then an

attacker would have access to all of the related data. Consequently, a better solution

would be to store a small database for every client within a larger database (i.e. nested

databases) and encrypt each of the smaller databases with a different encryption keys

for each customer. Consequently, cracking a single encryption key would only give

access to a single customers data while the remainder of the larger database would

remain secure.

All of the suggestions outlined above can be implemented using Rockall-DB. These

suggestions are merely a small sample of the ways security can be improved using

Rockall-DB and this is not an exhaustive list of the possibilities.

